Scientific Journal

Applied Aspects of Information Technology


The features of the use of the theory of integral series in applied problems of identification of nonlinear dynamic systems in the field of diagnosing the state of cutting tools are considered. The prospects for developing a method for estimating the states of cutting tools based on indirect measurements using integral non-parametric dynamic models based on experimental input-output data using test pulse effects on the cutting system are substantiated. This approach allows increasing the efficiency of diagnosis by reducing the amount of calculations, as well as, the reliability of the diagnosis by simultaneously taking into account the nonlinear and inertial properties of the system in integrated non-parametric dynamic models. In addition, the models in question are capable of describing faults caused by both changes in the system parameters and its structure, as well as can be used in test and functional diagnostics.

A method has been developed for building information models of cutting tool states based on indirect measurements using test pulse effects on a cutting system in the form of loads with impacts and recording system responses, on the basis of which information models are built in the form of multidimensional transition functions.

A block diagram of the organization of the experiment “input-output” in the framework of the problem of diagnosing the state of the tool under the conditions of pulse effects on the cutting system to obtain the primary diagnostic information is proposed. The methods of forming test pulse loads of the cutting system by successive insertion of the cutting tool into the workpiece with different cutting depths, with variable feed and with variable cutting duration are considered.

The computational experiment demonstrates the advantages of information models in the form of multidimensional transition functions for modeling nonlinear dynamic systems in problems of diagnosing the states of cutting tools. It has been established that multidimensional second-order transition functions can be used as an effective source of primary data in the construction of automated technical diagnostics systems.


1. Mamalis, A. G. (2006). “Modern aspects of advanced manufacturing”, Suchasnі tehnologіi u mashinobuduvannі, [Modern technologies in mechanical engineering], Vol, 2, Kharkiv, Ukraine, NTU “KhPI”, pp. 58-73.
2. Derevyanchenko, O. G., Pavlenko, V. D., Fomin, O. O, Bovnegra, L.V. & Pavlenko, S. V. (2013). Intellektual'nye sistemy raspoznavanija sostojanij rezhushhih instrumentov, [Intelligent recognition systems for cutting tools], Odesa, Ukraine, Publ. Astroprint, 300 p. [in Russian].
3. Derevyanchenko, O. G., Pavlenko, V. D. & Andreev, A. V. (1999). Diagnostirovanie sostojanij rezhushhih in-strumentov pri precizionnoj obrabotke, [Diagnosing the states of cutting tools with precision machining], Odessa, Ukraine, Publ. Astroprint, 184 p. [in Russian].
4. Rifai, A. P., Fukuda, R. & Aoyama, H. (2019). “Image based identification of cutting tools in turning-milling machines”, Japan Society for Precision Engineering, Vol. 85, Issue 2, pp. 159-166. DOI: 10.2493/jjspe.85.159.
5. Pavlenko, V. & Fomin, А. (2008). “Methods for Black–Box Diagnostics Using Volterra Kernels”, Proc. of the 2nd Int. Conf. on Inductive Modeling, (ICIM’2008), Kiev, Ukraine, pp. 104-107.
6. Lenkov, S., Zhyrov, G., Zaitsev, D., Tolok, I., Lenkov, E. (2017). “Features of modeling failures of recoverable complex technical objects with a hierarchical constructive structure”, Eastern-European Journal of Enterprise Technologies, Vol 4, No. 4 (88), pp. 34-42. DOI: 10.15587/1729-4061.2017.108395.
7. Povoroznyuk, A. I. & Somova, A. A. (2008). Formirovanie sistemy informativnyh diagnosticheskih priznakov na osnovanii kolichestvennogo vyrazhenija ih znachimosti, [Formation of a system of informative diagnostic features based on a quantitative expression of their significance], Herald of the National Technical University “KhPI”, Series of “Informatics and Modeling”, No. 24, pp. 137-141 [in Russian].
8. Povoroznyuk, A. I. (2007). Formirovanie diagnosticheskih intervalov chislennyh priznakov pri differencial'noj diagnostike, [Formation of diagnostic intervals of numerical signs in the differential diagnosis], Bulletin of the Khmelnytsky National University, No. 3, Vol. 1, pp. 106-109 [in Russian].
9. Subbotin, S. & Oliinyk, A. (2017). “The Sample and Instance Selection for Data Dimensionality Reduction, Recent Advances in Systems, Control and Information Technology”, Advances in Intelligent Systems and Computing, Vol. 543, pp. 97-103. DOI: 10.1007/978-3-319-48923-0_13.
10. Prokopyv, N. М., Bondarenko, V. P., Kharchenko, O. V. & Tsap, I. V. (2008). Vlijanie uslovij spekanija splava VK10 OM na kinetiku i mehanizmy iznosa ego v uslovijah chistovogo i udarnogo tochenija, [Influence of sintering conditions of VK10 OM alloy on the kinetics and mechanisms of its wear under conditions of finishing and impact turning], Cutting and tooling in technological systems, Kharkiv, Ukraine, Vol. 75, pp. 312-327 [in Russian].
11. Kumar, P., Chauhan, S. R., Pruncu, C. I., Gupta, M. K., Pimenov, D. Y., Mia, M. & Gill, H. S. (January 2019). “Influence of different grades of CBN inserts on cutting force and surface roughness of AISI H13 die tool steel during hard turning operation”, Vol. 12, Issue 1. DOI: 10.3390/ma12010177.
12. Lu, Z., Ma, P., Xiao, J., Wang, M. & Tang, X. (February 2019). “On-line Monitoring of Tool Wear Conditions in Machining Processes Based on Machine Tool Data”, Zhongguo Jixie Gongcheng, China Mechanical Engineering, Vol. 30, Issue 2, pp. 220-225. DOI: 10.3969/j.issn.1004-32X.2019.02.013.
13. Chungchoo, C. & Saini, D. (January 2019). “On-line tool wear estimation in CNC turning operations using fuzzy neural network model”, International Journal of Machine Tools and Manufacture, Vol. 42, Issue 1, pp. 29-40. DOI: 10.1016/S0890-6955(01)00096-7.
14. Liang, S. Y., Hecker, R. L. & Landers, R. G. (May 2004). “Machining process monitoring and control: The state-of-the-art”, Journal of Manufacturing Science and Engineering, Transactions of the ASME, Vol. 126, Issue 2, pp. 297-310. DOI: 10.1115/1.1707035.
15. De Oliveira, J. F. G. & Dornfeld, D. A. (2001). “Application of AE contact sensing in reliable grinding monitoring”, CIRP Annals – Manufacturing Technology, Vol. 50, Issue 1, pp. 217-220. DOI: 10.1016/S0007-8506(07)62108-8.
16. Xie, Z., Li, J. & Lu, Y. (February 2019). “Feature selection and a method to improve the performance of tool condition monitoring”, International Journal of Advanced Manufacturing Technology, Vol. 100, Issue 9-12, pp. 3197-3206. DOI: 10.1007/s00170-018-2926-5.
17. Zhang, X., Tsang, W.-M., Yamazaki, K. & Mori, M. (February 2013). “A study on automatic on-machine inspection system for 3D modeling and measurement of cutting tools”, Journal of Intelligent Manufacturing, Vol. 24, Issue 1, pp. 71-86. DOI: 10.1007/s10845-011-0540-6.
18. Saravanan, R., Asokan, P. & Sachithanandam, M. (2001). “Comparative analysis of conventional and non-conventional optimisation techniques for CNC turning process”, International Journal of Advanced Manufacturing Technology, Vol. 17, Issue 7, pp. 471-476. DOI: 10.1007/s001700170146.
19. Dang, J., Liu, G., Chen, Y., An, Q., Ming, W. & Chen, M. (May 2019). “Experimental investigation on machinability of DMLS Ti6Al4V under dry drilling process”, Materials and Manufacturing Processes, Vol. 34, Issue 7, pp. 749-758. DOI: 10.1080/10426914.2019.1594254.
20. Sahu, N. K., Andhare, A. B., Andhale, S. & Abraham, R. R. (May 2018). “Prediction of surface roughness in turning of Ti-6Al-4V using cutting parameters, forces and tool vibration”, Materials Science and Engineering, Vol. 346, Issue 1. DOI: 10.1088/1757-899X/346/1/012037.
21. Sidorov, D. N. (2013). Metody analiza integral'nyh dinamicheskih modelej: teorija i prilozhenija, [Methods of analysis of integral dynamic models: theory and applications], Irkutsk, Russian Federation, Ed. ISU, 293 p. [in Russian].
22. Simani, S., Fantuzzi, C. & Patton, R. J. (2003). “Model-Based Fault Diagnosis in Dynamic Systems Using Identification Techniques”, Publ. Springer-Verlag, New York.
23. Katipamula, S. & Brambley, M. R. (January 2005). “Methods for Fault Detection, Diagnostics, and Prognostics for Building Systems. A Review, Part I”, HVAC&R Research, Vol. 11, No. 1.
24. Cheng, C. M., Peng, Z. K., Zhang, W. M. & Meng, G. (November 2016). “Volterra-series-based nonlinear system modeling and its engineering applications: A state-of-the-art review”, Mechanical Systems and Signal Processing, pp. 1-25. DOI:10.1016/j.ymssp.2016.10.029.
25. Doyle, F. J., Pearson, R. K. & Ogunnaike, B. A. (2002). “Identification and control using Volterra models”, Germany, Springer Publ., 314 p.
26. Franz, M. O. & Scholkopf B. (2006). “A unifying view of Wiener and Volterra theory and polynomial kernel regression”, Neural Computation, Vol. 18(12), pp. 3097-3118.
27. Apartsyn, A. S., Solodusha, S. V. & Spiryaev, V. A. (2013). “Modeling of nonlinear dynamic systems with Volterra polynomials: elements of theory and applications”, International Journal of Energy Optimization and Engineering, Vol. 2, No. 4, pp. 16-8.
28. Pavlenko, V. D., Pavlenko, S. V. & Speranskyy, V. O. (2014). “Identification of Systems Using Volterra Model in Time and Frequency Domain”, Advanced Data Acquisition and Intelligent Data Processing, River Publishers, Chapter 10, pp. 233-270. DOI: 10.5772/58354.
29. Pavlenko, V. D., Speranskyy, V. O., Dombrovskyi, M. (2015). “The Engineering Software Tools for Nonlinear Dynamical Systems Identification Based on Volterra Models in Frequency Domain”, Proceedings of the 8th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, Warsaw, Poland, Vol. 1, pp. 386-391. DOI: 10.1109/IDAACS.2015.7340763.
30. Fomin, O., Masri, M. & Pavlenko, V. (2016). “Intelligent Technology of Nonlinear Dynamics Diagnostics Using Volterra Kernels Moments”, International Journal of Mathematical Models and Methods in Applied Sciences, Publisher NAUN, Vol. 10, pp. 158-165. ISSN: 1998-0140.
31. Pavlenko, V. D. (August 2006). “Estimation of the Volterra Kernels of a Nonlinear System Using Impulse Response Data”, Proc. the Eighth All–Ukrainian International Conference Signal/Image Processing and Pattern Recognition (UkrOBRAZ’2006), Kiev, Ukraine, pp. 191-194.
32. Vodichev, V. А. & Aldairi, Ali. (2018). “Investigation of the automated control system for the electric drive of the milling machine”, Electrotechnical and Computer Systems, No. 29 (105), pp. 169-172.
33. Tonconogy, V. М., Zelinskiy, S. А. & Vodichev V. A. (2017). “Ways of implementation of vibrations suppression methods at parts machining with CNC machine tools”, Odessa National Polytechnic University, Pratsi, Vol. 1(51), pp. 34-39.
34. Voskobojnikov, Yu. E., Gohakov, A. V. & Colcker, A. B. (2010). Fil'tracii signalov i izobrazhenij: Fur'e i vejvlet algoritmy (s primerami v Mathcad): monografija, [Filtration of signals and images: Fourier and wavelet algorithms (with examples in Mathcad): monograph], Novosibirsk State University of Architecture And Civil Engineering (Sibstrin), 188 p. [in Russian]
35. Verlan, A. F., Fedorchuk, V. A. & Ivanyuk, V. A. (2010). Komp’juterne modeljuvannja v zadachah dinamіki elektromehanіchnih system, [Computer modeling in the problems of dynamics of electromechanical systems], IPME named. G. E. Pukhov, Kamyanets-Podilsky Ivan Ogienko, Kamenets-Podolsky National University, 204 p. [in Russian].
36. Fomin, O. Medvedev, A. & Pavlenko, V. (September 2015). “Technology of Intelligent Diagnostics based on Volterra Kernels Moments”, Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, Proc. of the 8th IEEE International Conference IDAACS–2015, Warsaw, Poland, pp. 796-801.

Last download:
13 Aug 2020

[ © KarelWintersky ] [ All articles ] [ All authors ]
[ © Odessa National Polytechnic University, 2018.]