Scientific Journal

Applied Aspects of Information Technology

The work is devoted to the development of a control system for a wind generator with the use of a switched reluctance motor. The search for new structures for the construction of the power unit and control system of electromechanical systems of wind power complexes is an urgent task of today. The most common construction options for such systems include doublefed induction motors and permanent magnet synchronous generators. In the first case there is no possibility of full control of the flow of power transmitted to the network, and in the second case the main disadvantage is the high cost of such an electric machine, which is explained by the use of rare earth materials in its design. The use of a switched reluctance motor as a generator has significant differences compared to similar use of electric machines based on torque generation due to the Lorentz force. A mathematical model of the electromechanical system of a wind generator with a switched reluctance motor in the Matlab / Simulink environment was developed. It was shown by mathematical modeling that when changing the sign of load torque, the machine does not go into braking mode independently, as is the case with other electric machines. This creates considerable difficulties in the operation of such a system, since the transition to brake mode requires a change in control effects on the switched reluctance motor. Features of functioning of the switched reluctance motor in the mode of regenerative braking have been stated. The limits of change of control angles which allow to receive the maximum amount of the generated electric energy and reduction of pulsations of brake torque of the machine have been defined. The structure of the control system of a switched reluctance motor has been developed,
which involves the use of a modified speed controller, which divides its output signal into a sign function, which is subsequently used to select the converter control angles, as well as the absolute value used in the operation of the modulation algorithm of the required current magnitude.
1. Shevchenko, V. V. (2011). “Ekonomichne porivnyannya vitroenergetychnyh ustanovok z riznymy typamy elektrychnyh generatoriv zminnogo strumu”, [Economical comparison of wind generators with different types of AC generators], Information processing systems, Vol. 4, pp. 94-98 (in Ukrainian).
2. Tregub, M. I. (2014). “Obgruntuvannya magnitnoyi systemy dugostatornogo vitroelektrychnogo generatora z kilcepodibnym rotorom”, [Substantiation of a magnetic system of an arcwinding generator with an annular rotor], Proceedings of the Institute of Electrodynamics of the National Academy of Sciences of Ukraine, Vol. 39, pp. 57-64.
3. Mazurenko, L. I., Dzura, O. V., & Romanenko, V. I. (2015). “Matematychna model vitroelektrychnoyi stanciyi ta algorytm keruvannya vedenym asynxronnym generatorom v rezhymi roboty na merezhu postijnogo strumu”, [Mathematical model of wind power station and algorithm of control of a driven asynchronous generator in the mode of operation on a direct current network], Proceedings of the Institute of Electrodynamics of the National Academy of Sciences of Ukraine, Vol. 40, pp. 76-85.
4. Shchur, I. Z., Makarchuk, O. V., Shchur, V. I., & Golubovskij, P. J. (2015) “Elektromagnitnyj generator teplovoyi energiyi dlya avtonomnyx vitroenergoustanovok z vertykalnoyu vissyu obertannya”, [Electromagnetic thermal energy generator for autonomous wind farms with vertical axis of rotation], Bulletin of Lviv Polytechnic National University. Electric power and electromechanical systems, Vol. 834, pp. 88-94.
5. Ishchuk, Y. O., Sanduk, A. P., & Todortsev, Y. K. (2014) “Doslidzhennya efektyvnosti vykorystannya vitrogeneratora ta sonyachnoyi batareyi, yak dopomizhnyx dzherel elektrychnoyi energiyi”, [Investigation of the efficiency of the use of wind turbines and solar panels as auxiliary sources of electricity], Technological audit and production reserves, Vol. 4(2), pp. 7-10.
6. Zhuykov, V. Y., Yamnenko, Y. S., & Osipenko, K. S. (2015) “Pidvyshhennya energoefektyvnosti systemy elektrozhyvlennya z vitrogeneratorom”, [Improving the energy efficiency of a power system with a wind generator], Bulletin of the Kiev National University of Technology and Design. Series: Technical Sciences, Vol. 5, pp. 38-43.
7. Zhuykov, V. Y., & Osipenko, K. S. (2016). “Osoblyvosti vidboru energiyi vid vitrogeneratora v perexidnomu rezhymi oriyentaciyi na vektor vitrovogo potoku”, [Features of energy extraction from a wind generator in the transition mode orientation to the wind vector], Bulletin of Kryvyi Rih National University, Vol. 42, pp. 29-32.
8. Pokrovsky, K. B., Mavrin, O. I., & Shelekh, Yu. L. “Vybir potuzhnyx vitrogeneratoriv dlya realnyx umov”, [Choosing powerful wind turbines for real-world conditions], Bulletin of Lviv Polytechnic National University. Electric power and electromechanical systems, Vol. 870, pp. 71-75.
9. Sunan, E., Kucuk, F., Goto, H., Guo, H., & Ichinokura, O. (2014). “Three-phase full-bridge converter controlled permanent magnet reluctance generator for small-scale wind energy conversion systems”, IEEE Transactions on Energy Conversion, Vol. 99, iss. 3, pp. 1-9, doi:10.1109/TEC.2014.2316471.
10. Xue, X., Cheng, K., & Ho, S. (2002). “Simulation of switched reluctance motor drives using two-dimensional bicubic spline”, IEEE Transactions on Energy Conversion, Vol. 17, iss. 4, pp. 471-477, doi: 10.1109/TEC.2002.805226.
11. Capovilla, C., Santana, C., Filho, A., Barros, T., & Ruppert, E. (2015). “Performance of a direct power control system using coded wireless OFDM power reference transmissions for switched reluctance aerogenerators in a smart grid scenario”, IEEE Transactions on Industrial Electronics, Vol.
62, pp. 52-61, doi: 10.1109/TIE.2014.2331017.
12. Torrey, D. (2002) “Switched reluctance generators and their control”, IEEE Transactions on Industrial Electronics, Vol. 49, pp. 3-14, doi: 10.1109/41.982243. 13.
Krishnan, R. (2001). “Switched reluctance motor drives”. Modeling, Simulation, Analysis, Design and Applications, CRC PRESS.
14. Ogawa, K., Yamamura, N., & Ishida, M.(2006). “Study for small size wind power generating system using switched reluctance generator”, Proc. IEEE International Conference on Industrial Technology, pp. 1510-1515, doi:10.1109/ICIT.2006.372468 .
15. Cardenas, R., Pena, R., Perez, M., Clare, J., Asher, G., & Wheeler, P. (2005). “Control of a switched reluctance generator for variable-speed wind energy applications”, IEEE Transactions on Energy Conversion, Vol. 20, no. 4, pp. 781-791, doi:10.1109/TEC.2005.853733.
16. Narla, S., Sozer, Y., & Husain, I. (2012). “Switched reluctance generator controls for optimal power generation and battery charging”, IEEE Transactions on Industry Applications, Vol. 48, no. 5, pp. 1451-1459, doi: 10.1109/TIA.2012.2209850.
17. Xiong, L., Xu, B., Gao, H., & Xu, L. (2009). “A novel algorithm of switched reluctance generator for maximum power point tracking in wind turbine application”, International Conferenceon Sustainable Power Generation and Supply, pp. 1-5, doi: 10.1109/SUPERGEN.2009.5348183.
18. Hasanien, H. M., Muyeen, S. M., & Al-Durra, A. (2016). “Adaptive control strategy for low voltage ride through capability enhancement of a grid-connected switched reluctance wind generator”, IET International Conference on Renewable Power Generation (RPG), pp. 1-5, doi:10.1049/cp.2016.0595.
19. Yu, D., Fang, Z., & Chen, H. (2012). “Study on a microgrid system based on wind powered SRG”, IEEE International Conference on Automation and Logistics, pp. 489-494, doi: 10.1109/ICAL.2012.6308254.
20. Ichinokura, O., Ono, T., Takahashi, A.,Nakamura, K., & Watanabe, T. (2006). “Threephase reluctance generator with permanent magnets buried in stator core”, 12th International Power Electronics and Motion Control Conference, pp. 1032-1036, doi: 10.1109/EPEPEMC.2006.4778536.
21. Nakamura, K., Yoshida, J., & Ichinokura, O. (2009). “A novel high power permanent magnet reluctance generator using ferrite magnet”, 13th European Conference on Power Electronics and Applications, pp. 1-8.
22. Goto, H., Guo, H.-J., & Ichinokura, O. (2009). “A micro wind power generation system using permanent magnet reluctance generator, 13th European Conference on Power Electronics and Applications, pp. 1-8.
23. Raza, K. S. M., Goto, H., Guo, H. J., & Ichinokura, O. (2011). “A novel algorithm for fast and efficient speed-sensorless maximum power point tracking in wind energy conversion systems”, IEEE Transactions on Industrial Electronics, Vol.58, Iss., 1 pp. 29-36, doi:10.1109/TIE.2010.2044732.
24. Srinivas, K. N., & Arumugam, R. (2004). “Static and dynamic vibration analyses of switched reluctance motors including bearings housing rotor dynamics and applied loads”, IEEE Transactions on Magnetics, Vol. 40, no. 4, pp. 1911-1919, doi:10.1109/TMAG.2004.828034.
25. Koreboina, V. B., & Venkatesha, L. (2012). “Modelling and simulation of switched reluctance enerator control for variable speed wind energy conversion systems”, IEEE International Сonference on Power Electronics, Drives and Energy Systems, pp. 1-6, doi:10.1109/PEDES.2012.6484466.
26. Sunan, E., Raza, K. S. M., Goto, H., Guo, H. J., & Ichinokura, O. (2010). “Instantaneous torque ripple control and maximum power extraction in a permanent magnet reluctance generator driven wind energy conversion system”, The XIX International Conference on Electrical Machines – ICEM, pp. 1-6, doi:10.1109/ICELMACH.2010.5607896.
27. Sunan, E., Kucuk, F., Raza, K. S., Goto, H., Guo, H. J., & Ichinokura, O. (2013). “Torque ripple minimization and maximum power point tracking of a permanent magnet reluctance generator for wind energy conversion system”, J. Renewable Sustainable Energy, Vol. 5. 28. Zhi, X., Xiangjun, D., & Lei, L. (2018). “MPPT for wind power system with switched reluctance generator”, 13th IEEE Conference on Industrial Electronics and Applications, pp. 1420-1424, doi: 10.1109/ICIEA.2018.8397932.
29. Skiwinski, A., Wrobel, K., Tomczewski, K., & Tomczewski, A., (2018). “Impact of winding Parameters of a switched reluctance generator on energy efficiency of a wind turbine”, International Symposium on Electrical Machines (SME), pp. 1-4, doi: 10.1109/ISEM.2018.8442592.
30. Guyuan, J., & Ohyama, K. (2018). “Simulation of Wind Power Generation System Using Switched Reluctance Generator and Capacitor-less AC-AC converter”, International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia), pp. 2921-2926, doi: 10.23919/IPEC.2018.8507528.
31. Mapa, S., Maheswari, R., & Bhuvaneswari, G. (2018). “Comparative Design Analysis of Three-Phase Switched Reluctance Generators for Micro-Wind Power Applications”, 8th IEEE India International Conference on Power Electronics (IICPE), pp. 597-601.
32. Krzysztof, W., Krzysztof, T., Artur, S., & Andrzej, T. (2018). “The Impact of a Wind Turbine Characteristics on the Annual Energy Performance at Given Wind Speed Distribution”, Applications of Electromagnetics in Modern Techniques and Medicine, pp. 281-284, doi:10.1109/PTZE.2018.8503230.
33. Jagwani, S., Sah, G. K., & Venkatesha, L. (2018). “MPPT Based Switched Reluctance Generator Control for a Grid Interactive Wind Energy System”, 7th International Conference on Renewable Energy Research and Applications, pp. 998-1003, doi: 10.1109/ICRERA.2018.8566748.
34. Namazi, M. M., Nejad, S. M. S., Tabesh, A., Rashidi, A., & Liserre, M. (2018). “Passivity-Based Control of Switched Reluctance-Based WindSystem Supplying Constant Power Load”, IEEE Transactions on Industrial Electronics, Vol. 65, iss.12, pp. 1-10, doi: 10.1109/TIE.2018.2816008.
Last download:
17 Oct 2021


[ © KarelWintersky ] [ All articles ] [ All authors ]
[ © Odessa National Polytechnic University, 2018.]