Scientific Journal

Applied Aspects of Information Technology

COMPARISON OF MEASURED SURFACE LAYER QUALITY PARAMETERS WITH SIMULATED RESULTS
Abstract:
The grinding temperature is one of the factors limiting the throughput performance of the profile gear grinding operation. There are two main methods for determining the grinding temperature: an analytical method with the aid of analytical models and a simulation one based on both the analytical and geometrical models. In the paper, at the first stage the profile gear grinding temperature field is investigated with the aid of finite element method (FEM) simulation as an example of information technology which helps to predict the surface layer quality physical parameters. The results obtained are compared with similar calcula-tions for the analytical models and the tooth surface area is found to determine the temperature according with the analytical models. At the second stage, a series of experimental studies on the CNC machine Höfler Rapid 1250 is carried out on a real gear by means of a successive increase in the depth of profile gear grinding. From the gear machined the special samples were cut out on the electro-erosive machine mod. MV 2400S ADVANCE Type 2 (MITSUBISHI ELECTRIC Company) for additional investigation of these samples. The teeth surface layer quality experimental study and the structural-phase state of the surface layer metallographic analysis have been performed using modern measuring equipment and instruments, e.g. microscope Altami MET-5. It is established that, in other equal conditions, the highest grinding temperature occurs in the upper part of the tooth which is grinding. It is identified areas of the tooth profile, on which the grinding temperature can be calculated by the famous analytical dependencies. It is established that as the parameters characterizing the grinding intensity and the volume of material removal per unit of the grinding wheel width increase, the grinding burn arises and its thickness increases. The regularity of the change in the thickness of the burn along the height of the tooth is established, which makes it possible to evaluate the reliability of the corresponding theoretical studies.
Authors:
Keywords
DOI
10.15276/aait.04.2019.5
References
  1. Larshin, V. & Lishchenko, N. (2018). “Gear Grinding System Adapting to Higher CNC Grinder Throughput”. MATEC Web of Conferences, Vol. 226 (04033). DOI: https://doi. org/10.1051/matecconf /201822 604033.
  2. Larshin, V. & Lishchenko, N. (2019). “Adaptive Profile Gear Grinding Boosts Productivity of this Operation on the CNC Machine Tools”. In:1st International Conference on Design, Simulation and Manufacturing, DSMIE 2018, Sumy, Ukraine, Lecture Notes in Mechanical Engineering, Publ. Springer, Cham, pp. 79-88. DOI: 10.1007/978-3-319-93587-4_9.
  3. Larshin, V. & Lishchenko, N. (2018). “Research Methodology for Grinding Systems”. Russian Engineering Research, Vol. 38, Issue9, pp. 712-713. DOI: 10.3103/S1068798X1809024.
  4. 4. Yakimov, A. V. (1979). “Kachestvo izgotovleniya zubchatykh koles”. [The Quality of Manufacturing Gears], Moscow, Russian Federation,Publ. Mashinostroyeniye, 191 p.(in Russian).
  5. 5. Evseyev, D. G. (1975). “Formirovaniye svoystv poverkhnostnykh sloyev pri abrazivnoy obrabotke”.[Formation of the Properties of Surface Layers in Abrasive Machining], Saratov,Russian Federation, Izd-vo Saratov. un-ta, 128 p.(in Russian).
  6. 6. Sundarrajan, K. D. (2017). “Study of Grinding Burn Using Design of Experiments Approach and Advanced Kaizen Methodology”, PhD Thesis, The graduate college at the University of Nebraska Lincoln, Nebraska, 65 p.
  7. Тan, J.,Jun,Y. & Siwei, P. (2017). “Determination of Burn Thresholds of Precision Gears in Form Grinding Based on Complex Thermal Modelling and Barkhausen Noise Measurements”. The International Journal of Advanced Manufacturing Technology, Vol. 88, Issue1-4, pp. 789-800. DOI: 10.1007/s00170-016-8815-x.
  8. Jun, Y.Ping, L. (2017). “Temperature Distributions in Form Grinding of Involute Gears”. The International Journal of Advanced Manufacturing Technology, Vol.88, Issue 9-12, pp. 2609-2620. DOI: 10.1007/s00170-016-8971-z.
  9. Jermolajev, S., Epp, J., Heinzel, C. & Brinksmeier, E. (2016). “Material Modifications Caused by Thermal and Mechanical Load during Grinding”, 3rd CIRP conference on surface integrity (CIRP CSI) Procedia CIRP 45, pp. 43-46. DOI: https://doi.org/10.1016/j.procir.2016.02.159.
  10. Jermolajev, S., Brinksmeier, E. & Heinzel, C. (2018). “Surface Layer Modification Charts for Gear Grinding”, CIRP Annals - Manufacturing Technology, 67(1), pp. 333-336. DOI: https://doi.org/10.1016/j.cirp.2018.04.071.
  11. Heinzel, C., Sölter, J., Jermolajev, S., Kolkwitz, B. & Brinksmeier, E. (2014). “A Versatile Method to Determine Thermal Limits in Grinding”, 2nd CIRP Conference on Surface Integrity (CSI) Procedia CIRP 13, pp. 131-136. DOI:https://doi.org/10.1016/j.procir.2014.04.023.
  12. Malkin, S. & Guo, C. (2007). “Thermal Analysis of Grinding”. CIRP Annals Manufacturing Technology, Vol. 56, Issue2, pp. 760-782. DOI: https://doi.org/10.1016/j.cirp.2007.10.005.
  13. Karpuschewski, B., Bleicher, O. & Beutner, M. (2011). “Surface Integrity Inspection on Gears Using Barkhausen Noise Analysis”, 1st CIRP Conference on Surface Integrity (CSI) Procedia Engineering 19, pp. 162-171. DOI: https://doi.org/10.1016/j.proeng.2011.11.096.
  14. Vrkoslavová, L., Louda, P. & Malec, J. (2014). “Analysis of Surface Integrity of Grinded Gears Using Barkhausen Noise Analysis and X-Ray Diffraction”, 40th Annual Review of Progress in Quantitative Nondestructive Evaluation APP Conf. Proc. 1581, pp. 1280-1281. DOI: 10.1063/1.4864968.
  15. Crow, J. R. & Michael A. (2018). “Pershing Standard Samples for Grinder Burn Etch Testing”, Gear Technology (June), pp. 54-56.
  16. Mazuru, S., Casian, M. & Scaticailov, S. (2017). “The Processing Accuracy of the Gear”, MATEC Web of Conferences 112, 01026, pp. 1-6. DOI: https://doi.org/10.1051/matecconf/201711201026
  17. Wojtas, A. S., Suominen, L., Shaw, B. A. & Evans, J. T. (1998). “Detection of Thermal Damage in Steel Components after Grinding Using the Magnetic Barkhausen Noise Method”,https://www.ndt.net/article/ecndt98/aero/041/041.htm.
  18. Zaborowski, T. & Ochenduszko, R. (2017). “Grinding Burns in the Technological Surface of the Gear Teeth of the Cylindrical Gears”, MECHANIK NR, 10. DOI: https:// doi.org/10.17814/mechanik.2017.10.135.
  19. Blake, G., Margetts M. & Silverthorne, W. (2009). “Gear Failure Analysis Involving Grinding Burn”,Gear technology (2009 January/February), pp. 62-66.(July 2014), “No Compromising on Quality at Allison Transmission”,Technology,pp.22-24.
  20. Gorgels, C., Klocke, F. & Schröder, T. (August 2008).“Influence of Grinding Burn on Pitting Capacity”,Gear Technology, pp.58-63.
  21. Korn, D.Applying Inductive Technology to Detect Grinding Burn. Available at https://www.mmsonline.com/articles/applying-inductive-technology-to-detect-grinding-burn.
  22. Klocke, F. & Schlattmeier, H. (2004). “Surface Damage Caused by Gear Profile Grinding and its Effects on Flank Load Carrying Capacity”,Gear technology (2004 September/October), pp. 44-53.
  23. Golgels, C., Schlattmeier, H. & Klocke, H. (November/December 2006). “OptimizationoftheGearProfileGrindingProcessUtilizinganAnalogyProcess”,Geartechnology, pp. 34-40.
  24. 24. André de Lima, Gâmbaro, L. S., Junior, M. V. & Baptista, E. B. “The Use of Cylindrical Grinding to Produce a Martensitic Structure on the Surface of 4340 Steel”. DOI:tp://dx.doi.org/10.1590/S1678-58782011000100005.
  25. Lishchenko, N. V. & Larshin, V. P. (2019). “Profile Gear Grinding Temperature Determination”. In: 4th International Conference on Industrial Engineering, ICIE, Lecture Notes in Mechanical Engineering. Publ. Springer, pp. 1723-1730. DOI: https://doi.org/10.1007/978-3-319-95630-5_185.
  26. Deivanathan, R. & Vijayaraghavan, L. (2013). “Тheoretical Analysis of Thermal Profile and Heat Transfer in Grinding”. International Journal of Mechanical and Materials Engineering, (IJMME), Vol. 8, Issue1, pp. 21-31.
  27. Yadav, Mr. R. K. (2014). “Analysis of Grinding Process by the Use of Finite Element Methods”. ELK Asia Pacific Journal of Manufacturing Science and Engineering, Vol. 1, Issue1, pp. 35-42.
  28. Foeckerer, T., Zaeh, M. & Zhang, O. (2013). „A Three-Dimensional Analytical Model to Predict the Thermo-Metallurgical Effects within the Surface Layer during Grinding and Grind-Hardening”. International Journal of Heat and Mass Transfer, Vol. 56, Issue 1-2, pp. 223-237. DOI: 10.1016/j.ijheatmasstransfer.2012.09.029.
  29. González-Santander, J. L. (2016). “Maximum Temperature in Dry Surface Grinding for High Peclet Number and Arbitrary Heat Flux Profile”. Hindawi Publishing Corporation Mathematical Problems in Engineering, Vol. 2016, Article ID 8470493, pp. 1-9. DOI: http://dx.doi.org/10.1155/2016/8470493.
  30. Guo, C. & Malkin, S. (1995). “Analysis of Transient Temperatures in Grinding”. Journal of Engineering for Industry, Vol. 117, Issue4, pp. 571-577. DOI: doi:10.1115/1.2803535.
  31. Beizhi, L., Dahu, Z., Zhenxin, Z., Qiang, Z. & Yichu, Y. (2011). “Recearch on Workpiece Surface Temperature and Surface Quality in High-Speed Cylindrical Grinding and its Inspiration”, Advanced Materials Research, 325, pp. 19-27. DOI: https:// doi.org/10.4028/www.scientific.net/AMR.325.19.
  32. Li Hao N. & Axinte, D. (2017). ”On a Stochastically Grain-Discretised Model for 2D/3D Temperature Mapping Prediction in Grinding”, International Journal of Machine tools and manufacture 116, pp. 1-27. DOI: 10.1016/j.ijmachtools.2017.01.004.
  33. Tadeu, A. & Simoes, N. (2006). ”Three-Dimensional Fundamental Solutions for Transient Heat Transfer by Conduction in an Unbounded Medium, Half-Space, Slab and Layered Media”, Engineering Analysis with Boundary Elements, 30(5), pp. 338-349. DOI: 10.1016/j.enganabound.2006.01.011.
  34. Chen, Xun & Öpöz, T. (2016). “Effect of Different Parameters on Grinding Efficiency and its Monitoring by Acoustic Emission”, Production & Manufacturing Research. An Open Access Journal, 4(1), pp. 190-208. DOI: https://doi.org/10.1080/21693277.2016.1255159.
  35. Linke, B., Duscha, M., Vu, A. T. & Klocke F. (2011). “FEM-Based Simulation of Temperature in Speed Stroke Grinding with 3D Transient Moving Heat Sources”. Advanced Materials Research, Vol. 223, pp. 733-742. DOI: https://doi.org/10.4028/ www.scientific.net/AMR.223.73.
  36. Patil Prashant & Patil Chandrakant. (2017) “FEM Simulation and Analysis of Temperature Field of Environmental Friendly MQL Grinding”. Proceedings of the international conference on communication and signal processing 2016 (iccasp 2016): pp. 182-186.
  37. Sharma, C., Ghosh, S. & Talukdar, P. (2014). “Finite Element Analysis of Workpiece Temperature during Surface Grinding of Inconel 718 Alloy”. In: 5th international & 26th all India manufacturing technology, design and research conference, IIT Guwahati, Assam, India, pp. 420-1–420-6.
  38. Rena,X. & Hu, H. (2014).“AnalysisontheTemperatureFieldofGearFormGrinding”, AppliedMechanicsandMaterials, 633-634, pp. 809-812.DOI: 10.4028 /www.scientific.net/AMM.633-634.809.
  39. Mahdi, M. & Liangchi, Z. (1995). “The Finite Element Thermal Analysis of Grinding Processes by ADINA”. Computers & Structures, Vol. 56, Issue2-3, pp. 313-320. DOI: https://doi.org/10.1016/0045-7949(95)00024-B.
  40. Zhang, L. (2012). “Numerical Analysis and Experimental Investigation of Energy Partition and Heat Transfer in Grinding”.In: M. SalimNewazKazi (Eds.) Heat Transfer Phenomena and Applications, Sense publishers, Rotterdam, the Netherlands, pp. 79-98. DOI: 10.5772/52999.
  41. Larshin, V. P. (1999). “Tekhnologiya mnogonitochnogo rezboshlifovaniya pretsizionnykh khodovykh vintov” [Multi-Thread Grinding Technology for Precision Ball Screws]. Trudy Odes. politekhn. un-ta, Odessa, Ukraine, 2(8), pp. 87-91 (in Russian).
  42. Lishchenko, N. (2018). “Profile Gear Grinding Temperature Determination”, Transactions of Kremenchuk Mykhailo Ostrohradskyi National University, 1(108), pp. 100-108.
  43. Carslaw, H. S. & Jaeger, J. S. (1959). “Conduction of Heat in Solids”.Oxford University Press; 2 ed. Great Britain:Oxford.
  44. Larshin, V. P, Kovalchuk, E. N. & Yakimov, A. V. (1986). “Primenenie resheniy teplofizicheskikh zadach k raschetu temperatury i glubiny defektnogo sloya pri shlifovanii”, [Application of Solutions of thermo-Physical Problems to the Calculation of the Temperature and Depth of the Defective Layer during Grinding], Interuniversity collection of scientific works, Perm; pp. 9-16 (in Russian).
  45. Sipaylov, V. A. (1978). “Teplovye protsessy pri shlifovanii i upravlenie kachestvom poverkhnosti”, [Thermal Processes During Grinding and Surface Quality Control], Mashinostroenie, Moscow, Russian Federation (in Russian).
Published:
Last download:
14 June 2021

Contents


[ © KarelWintersky ] [ All articles ] [ All authors ]
[ © Odessa National Polytechnic University, 2018.]