Scientific Journal

Applied Aspects of Information Technology


The article presents the results of the synthesis of digital controllers for automatic control systems of heat exchangers of central air conditioning systems, functioning under variable significant disturbing influences. The developed regulators are designed to provide the specified quality of regulation (short regulation time, permissible value of regulation), changes in the settings of the regulators taking into account the operating conditions of the regulatory object. The circuitry of regulators should be relatively simple. The requirements for the developed controllers are implemented in a typical digital PID-controller with optimization of its settings using the differential evolution algorithm. To assess the quality of PID-regulation, the regulator was tested in the ModelSim program. Test results were analyzed using Matlab. In order to implement the requirements for the developed regulators as an alternative to the PID-regulator with optimization of its settings using the differential evolution algorithm, a combined automatic control system based on the P-regulator has been created. The control system contains a P-controller with a synthesized corrective link, providing control by the deviation of the controlled variable from its predetermined value and by the perturbation applied to the controlled variable. Assessment of the quality of regulation of the P-regulator with the corrective link was carried out according to the results of research at Matlab. PID-controller with optimization of its settings using the differential evolution algorithm, as well as P-controller with corrective link is implemented in FPGA. The main language for describing the hardware for implementing regulators in FPGAs is the language for high-speed integrated circuits (VHDL). A comparative analysis of the results of a study of a digital PID-controller with parameter optimization and a combined automatic control system made it possible to establish that the controllers satisfy the required regulatory quality in the automation of heat exchangers in central air conditioning systems that are subject to significant disturbances. They have the ability to change settings taking into account the operating conditions of the regulatory object. It was found that the use of a P-controller with a synthesized corrective link, which has a simpler circuit solution, allows us to provide better control quality indicators in comparison with a PID-controller with optimized settings.

  1. Richard, C. Dorf, & Robert, H. Bishop (2011). “Modern Control Systems”, Pearson, 1111 р. DOI: 10.1002/rnc.1054.
  2. Katsuhiko, Ogata (2011). ”Modern Control Engineering, Fifth Edition”, Pearson, 905 р. DOI: 10.1093/benz /9780199773797.article.b00128780.
  3. Olsson, G. & Dj. P'yani (2001). “Tsifrovyye sistemy avtomatizatsii i upravleniya”, [Digital Automation and Control Systems]. SPb.: Russian Federation,Nevsky Dialect, 577 р. (in Russian).
  4. Astrom, K. J. & Hagglund, T. (2006). “Advanced PID-control”, ISA The Instrumentation, System, and Automation Society, 460 p. DOI: 10.1016/s0967-0661(01)00062-4.
  5. Ziegler, J. G. & Nichols, N. B. (1942). “Optimum Settings for Automatic Controllers”. Trans. ASME. 64(8), pp. 759-768.
  6. Cohen, G. H. & Coon, G. A. (1953). “Theoretical Consideration of Retarded Control”. Trans. ASME. 75: рp. 827-834.
  7. Mahboobib, S. H. & Alasty, A. (2011). “Optimum Synthesis of Fuzzy Logic Controller for Trajectory Tracking by Differential Evolution”, Scientia Iranica, Iran, pp. 261-267. DOI: 10.1016/j.scient.2011.03.021.
  8. Shing-Tai Pan. (2011). “Evolutionary Computation on Programmable Robust IIRFilter Pole-Placement Design”, Instrumentation and Measurement, Vol. 60, pp. 1469-1479. DOI: 10.1109/tim.2010.2086850.
  9. Mika, Hanhila, Timo, Mantere & Jarmo, T. Alander (2018). “FPGA-implementation of PID-controller by Differential Evolution Optimization”, Open Engineering, Vol. 8, Issue 1, рр. 395-402, DOI: 10.1515/eng-2018-0038.
  10. Rastegar, R. & Hariri, A. (2006). “A Step Forward in Studying the Compact Genetic Algorithm”, Evolutionary Computation, Vol. 14, No. 3, pp. 277-289. DOI: 10.1162/evco.2006.14.3.277. 
  11. Storn, R. & Price, K. (1995)., “Differential Evolution – A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces”, Journal of Global Optimization, Vol. 11, pp. 341-359.
  12. Chandra, A. & Chattopadhyay, S. (2012). “Role of Mutation Strategies of Differential Evolution Algorithm in Designing Hardware Efficient Multiplier-less Low pass FIR Filter”, Journal of Multimedia, Vol. 7, No. 5, pp. 353-363. DOI: 10.4304/jmm.7.5.353-363.
  13. Hiendro, A. (2011). “Multiple Switching Patterns for SHEPWM Inverters Using Differential Evolution Algorithms”, International Journal of Power Electronics and Drive System, Vol. 1, pp. 94-03. DOI: 10.11591/ijpeds.v1i2.101.
  14. Singh, R., Muzzio, F., Ierapetritou, M. & Ramachandran, R. (2015). “A Combined Feed-Forward/Feed-Back Control System for a QbD-Based Continuous Tablet Manufacturing Process”, Processes, 3 (2), 339-356. DOI: 10.3390/pr3020339.
  15. Singh, R. (2015). “A Combined Feed-Forward/Feed-Back Control System for a QbD-Based Continuous Tablet Manufacturing Process”, Processes, Vol. 3, Issue 2, рр. 339-356. DOI: 10.3390/pr3020339.
  16. Besekerskiy, V. A. & Popov, Ye. P. (2003). “Teoriya sistem avtomaticheskogo upravleniya” [Theory of Automatic Control Systems], SPb: Russian Federation,Profession, 752 р. (in Russian).
  17. Vychuzhanin, V. V. (2005). “Sostoyaniye rynka i dinamika primeneniy PLIS firmy Altera”. [Market Conditions and Dynamics of Alter’s FPGA Applications], CHIP NEWS, No 4, рр.22-26 (in Russian).
  18. Vychuzhanin, V. V. (2006). “Rynok PLIS i ikh primeneniye” [FPGA Market and their Application], Elektronnyye komponenty i sistemy, No. 11, pp. 29-34 (in Russian).
  19. Grout, Ian. (2008). “Digital systems design with FPGAs and CPLD”, Newnes, 763 р. DOI: 10.1016/b978-0-7506-8397-5.x0001-3.
  20. Shyamala, G., M., Gurunadha, Babu, Muni & Praveena Rela. (2014). “Digital PID Controller Implementation for Speed Control Applications Using FPGA”, International Journal of Scientific Engineering and Technology Research, Vol. 03, Issue. 48, pp. 9745-9749.
  21. Vychuzhanin, V. V. (2011). “Realizatsiya fazzi-regulyatora s nechetkoy dinamicheskoy korrektsiyey” [Implementation of a Fuzzy Controller with Fuzzy Dynamic Correction], Yelektronniy vísnik NUK, No.1, pp.103-112 (in Russian).
  22. Vychuzhanin, V. V. (2011). “Metodika kompleksnogo proyektirovaniya optimal'nykh sistem upravleniya s PLIS elektrodvigatelyami” [Methodology for the Integrated Design of Optimal Control Systems with FPGA Electric Motors], Sovremennaya elektronika, No. 7, pp. 54-59 (in Russian).
  23. Vychuzhanin, V. V. (2011) “Realizatsiya tsifrovoy obrabotki signalov peremennoy tochnosti na PLIS”. [Implementation of Digital Processing of Variable Accuracy Signals on FPGA Digital Signal Processing], Tsifrovaya obrabotka signalov, No. 3, pp. 62-66 (in Russian).
  24. Swarnalatha, A. & Shanthi, A. P. (2012). “Optimization of Single Variable Functions Using Complete Hardware Evolution”, Applied Soft Computing, Vol. 12, pp. 1322-1329. DOI:  10.1016/j.asoc.2011.12.001.
  25. Abdoalnasir Almabrok, Mihalis Psarakis & Anastasios Dounis. (2018). “Fast Tuning of the PID Controller in An HVAC System Using the Big Bang–Big Crunch Algorithm and FPGA Technology”, Algorithms, Vol.11, No.146, pp.1-19. DOI:10.3390/a11100146.
  26. Hwang, K. & Cho, S. (2009). “Improving Evolvable Hardware by Applying the Speciation Technique”, Applied Soft Computing, Vol. 9, pp. 254-263. DOI: 10.1016/j.asoc.2008.01.011.
  27. Thoma, Y. & Sanchez, E. (2004). “A Reconfigurable Chip for Evolvable Hardware”, GECCO, Springer-Verlag Berlin Heidelberg, Vol. 3102, рр. 816-827. DOI: 10.1007/978-3-540-24854-5_84.
  28. Lima João Ricardo, Menotti João M. P. Cardoso & Eduardo Marques. (2006). “A Methodology to Design FPGA-based PID controllers”. Systems, Man and Cybernetics, IEEE Transactions, рр. 2577-2583. DOI: 10.1109/icsmc.2006.385252.
  29. Vychuzhanin, V. V. (2009). “Povysheniye effektivnosti ekspluatatsii sudovoy sistemy komfortnogo konditsionirovaniya vozdukha pri peremennykh nagruzkakh”. [Improving the Operational Efficiency of the ship's System of Comfortable air Conditioning at Variable Loads], Monografiya Odessa: Ukraine, ONMU, 206 p. (in Russian).
  30. Vychuzhanin, V. V. (2007). “Matematicheskiye modeli nestatsionarnykh rezhimov vozdukhoobrabotki v tsentral'noy SKV” [Mathematical Models of Unsteady Modes of air Treatment in the Central SCR], Visnyk Odesʹkoho nats. morsʹkoho un-tu: Zb. nauk. pratsʹ,Odesa: Ukraine, ONMUNo. 23, рр. 172-185 (in Russian).
  31. Vychuzhanin, V. V. (2007). “Dinamicheskiye svoystva agregatov tsentral'noy sistemy konditsionirovaniya vozdukha”. [Dynamic Properties of Central air Conditioning units], Visnyk Odesʹkoho nats. morsʹkoho un-tu: Zb. nauk. pratsʹ.Odesa: Ukraine, ONMU, No. 22, рр. 200-218 (in Russian).
  32. Storn, R. & Price, K. (1996). “Minimizing the real Functions of the ICEC'96 Contest by Differential Evolution”, Proceedings of IEEE International Conference on Evolutionary Computation, Nagoya, Japan:pp. 842-844. DOI: 10.1109/icec.1996.542711.
  33. Rainer, Storn & Kenneth, Price. (1997). “Differential Evolution - A Simple and Efficient Heuristic for global Optimization over Continuous Spaces”, Journal of Global Optimization , Vol. 11, Issue 4, pp 341-359. DOI: 10.1007/978-1-4757-2627-5_19.
  34. (2015). Implementing a PID Controller in a Microsemi FPGA Application Note AC303 Мicrosemi Corporation, 8 р.
  35. Zainalabedin, Navabi. (2016) “Proyektirovaniye vstraivayemykh sistem na PLIS” [Designing Embedded Systems on FPGAs], DMK Press, 464 р. (in Russian).
Last download:
7 May 2021


[ © KarelWintersky ] [ All articles ] [ All authors ]
[ © Odessa National Polytechnic University, 2018.]