Scientific Journal

Applied Aspects of Information Technology

APPLICATION OF PROBABILISTIC-TIME GRAPHS FOR EVALUATING THE EFFECTIVENESS OF THE ELECTROCARDIOLOGICAL STUDY PROCESS
Abstract:
This work is devoted to the development of a structural model of the patient’s electrocardiological study process based on graph theory, probability theory and the method of generating functions. The developed structural model is presented in the form of a probabilistic-time graph, in which nine main states and an uncertainty state (a set of states that do not lead to the goal) are identified, as well as the probabilistic-time characteristics of the arcs of transitions from one graph state to another. The following are identified as the main states characterizing the process to complete an electrocardiological study: the beginning of the study; indications were defined; morphological analysis of biomedical signals with locally concentrated features was performed; pathological changes were identified; comparison with previous electrocardiological studies was performed; dynamics evaluation was completed; evaluation of treatment effectiveness was completed; diagnostic decision was made; recommendations were issued (the end of the electrocardiological study). For the proposed model of the electrocardiological study process by the Mason method, there are obtained analytical expressions for the generating functions of the entire graph, as well as the part of the graph that characterizes the successful completion of the electrocardiological study. Using the indicated generating functions, analytical expressions were obtained to calculate the average transit time of an electrocardiological study and the probability of successful completion of this process. To get all analytic expressions, a program was written in the Matlab language. The developed structural model of an electrocardiological study in the form of a probabilistic-time graph made it possible to identify the main states and determine the criteria for the effectiveness of the process in terms of average time and the probability of a successful study.
Authors:
Keywords
DOI
10.15276/aait.01.2020.3
References
1. Timchik, S. V., Zlepko, S. M. & Kostishyn S. V. (2016). “Klasyfikacija medychnyh informacijnyh system i tehnologij za integral'nym sukupnym kryterijem”. [Classification of medical information systems and technologies by the integrated cumulative criterion]. Information processing systems, 3 (140), pp. 194-198 (in Ukrainian). 
2. Doan, D. Ch., Kroschilin, A. W. & Kroschilina, C. W. (2015). “Obsor podchodow k probleme prinjatija reschenij w medizinckich invormazionnych cictemach w uclowijach neopredelennocti”. [Overview of approaches to the problem of decision-making in medical information systems in the face of uncertainty]. Basic research, 12 (1), pp. 26-30 (in Russian). 
3. Gucew, A. W. & Sarubina, T. W. (2017). “Podderzhka prinjatija wratschebnych reschenij w medizinckich invormazionnych cictemach medizinckoj organisazii”. [Support for the adoption of medical decisions in the medical information systems of a medical organization]. Doctor and information technology, 2, pp. 60-72 (in Russian). 
4. Fainzylberh, L. S. (2015). “Obobschennyiy metod obrabotki tsiklicheskih signalov slozhnoy formyi v mnogomernom prostranstve parametrov”, [A generalized method for processing cyclic signals of complex shape in a multidimensional parameter space]. International Scientific and Technical Journal “Problems of control and informatics”, 2, pp. 58-71 (in Russian). 
5. Salih, S. K., Aljunid, S. A., Yahya, A. & Ghailan K. (2012). “A Novel Approach for Detecting QRS Complex of ECG signal”. International Journal of Computer Science Issues, 9 (6), 3, pp. 205-215. 
6. Karimipoura, A. & Homaeinezhad, M. R. (2014). “Real-time electrocardiogram P-QRS-T detection-delineation algorithm based on qualitysupported analysis of characteristic templates”. Computers in Biology and Medicine, 52, pp. 153- 165. DOI: 10.1016/j.compbiomed.2014.07.002. 
7. Kligfield, P., Gettes, L. S., Bailey, J. J. & others (2007). “Recommendations for the standardization and interpretation of the electrocardiogram”. Part I: “The electrocardiogram and its technology: a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society”. Circulation, 115, pp. 1306-1324. DOI: 10.1016/j.jacc.2007.01.024. 
8. Abawajy, J. H., Kelarev, A. V. & Chowdhury M. (2013). “Multistage approach for clustering and classification of ECG data”. Computer Methods and Programs in Biomedicine, 112 (3), pp. 720-730. DOI: 10.1016/j.cmpb.2013.08.002. 
9. Pasollia, E. & Melgani, F. (2015). “Genetic algorithm-based method for mitigating label noise issue in ECG signal classification”. Biomedical Signal Processing and Control, 19, pp. 130-136. DOI: 10.1016/j.bspc.2014.10.013. 
10. Ruvinskaya, V. M., Shevchuk, I. & Michaluk, N. (2019). “Models based on conformal predictors for diagnostic systems in medicine”. Applied Aspects of Information Technology, 2 (2), pp. 127-137. DOI: 10.15276/aait.02.2019.4. 
11. Serbest, K., Bozkurt, M. R. & Eldoğan (2015). “Classification of cardiac arrhythmias with artificial neural networks according to gender differences”. Journal of Engineering Science and Technology, 10(9), pp. 1144-1149. 
12. Ceylana, R., Özbaya, Y. & Karlikb B. (2009). “A novel approach for classification of ECG arrhythmias: Type-2 fuzzy clustering neural network”. Expert Systems with Applications, 36 (3), pp. 6721-6726. DOI: 10.1016/j.eswa.2008.08.028. 
13. Doğan, B. & Korürek, M. (2012). “A new ECG beat clustering method based on kernelized fuzzy c-means and hybrid ant colony optimization for continuous domains”. Applied Soft Computing, 12 (11), pp. 3442-3451. DOI: 10.1016/j.asoc.2012.07.007. 
14. Dubrowin, W. I., Twerdochleb, Ju. W. & Chartschenko W. W. (2014). “Awtomatisirowannaja cictema analisa i interpretazii JeKG”. [Automated ECG analysis and interpretation system]. Radio electronics, computer science, management, 1, pp. 150-157 (in Russian). 
15. Kolomejzewa, A. W., Mischugowa, G. W., Mul, A. P. & Rjabych G. Ju. (2010). “Primenenie wejwlet-preobrasowanija i metoda Proni dlja identivikazii biogennych cignalow”. [Application of wavelet transform and Proni method for identification of biogenic signals]. Herald of DSTU, Rostov-on-Don, Russian Federation, DSTU, 10, 4(47), pp. 455-465 (in Russian). 
16. Povoroznyuk, A. I., Filatova, A. E., Zakovorotniy, A. Yu. & Shehna Kh. (2019). “Development of Method of Matched Morphological Filtering of Biomedical Signals and Images”. Automatic Control and Computer Sciences, 53 (3), pp. 253 – 262. DOI: 10.3103/S014641161903009X. 
17. Leski, J. M. & Henzel N. (2004). “ECG baseline wander and powerline interference reduction using nonlinear filter bank”, Signal Process, 35 (4), pp. 781-793. 
18. Iravanian, S. & Tung, L. (2002). “A novel algorithm for cardiac biosignal filtering based on filtered residue method”. IEEE Transactions on Biomedical Engineering, 49 (11), pp. 1310-1317. DOI: 10.1109/TBME.2002.804589. 
19. Ho, C. Y.-F., Ling, B. W.-K., Wong, T. P.- L., Chan, A. Y.-P. & Tam P. K.-S. (2003). “Fuzzy multiwavelet denoising on ECG signal”. Electronics Letters, 39 (16), pp. 1163-1164. DOI: 10.1049/el:20030757. 
20. Ercelebi, E. (2004). “Electrocardiogram signals de-noising using lifting-based discrete wavelet transform”. Computers in Biology and Medicine, 34 (6), pp. 479-493. DOI: 10.1016/S0010- 4825(03)00090-8. 
21. Poornachandra, S. & Kumaravel, N. (2005). “Hyper-trim shrinkage for denoising of ECG signal”. Digital Signal Process, 15 (3), pp. 317-327. DOI: 10.1016/j.dsp.2004.12.005. 
22. Blinow, P. A. & Micheew A. A. (2009). “Analis metodow kompencazii drejva isolinii jelektrokardiocignala”. [Analysis of compensation methods for the drift of the contour of an electrocardiogram signal]. Herald of RSRTU, Ryazan, Russian Federation, RSRTU, 4 (30), pp. 94- 97 (in Russian). 
23. Blinow, P. A. (2011). “Algoritmy uctranenija drejva isolinii jelektrokardiocignala na ocnowe preobrasowanija ego cpektra”. [Algorithms for eliminating the drift of the isoline of an electrocardiogram based on the conversion of its spectrum]: the abstract of the dissertation of the candidate of technical sciences (05.11.17). Ryazan, Russian Federation, 16 p. (in Russian). 
24. Orlow, W. W. (2017). “O sapolnenii werschin orientirowannogo grava”. [About filling vertices of a directed graph]. Electronic scientific journal “Engineering Herald of Don”, 4. [Electronic resource]. – Access mode: ivdon.ru/ru/magazine/archive/n4y2017/4574. – Active link – 20.10.2019 (in Russian). 
25. Polshchikov, К. А. (2015). “Ozenka werojatnoctno-wremennych charakterictik doctawki dannych w becprowodnoj camoorganisujushejcja ceti”. [Probability-time characteristics estimates of data delivery in the wireless ad hoc network]. Scientific reports of Belgorod State University: Series Economics, Informatics, 7 (204), 34/1, pp. 183-187 (in Russian). 
26. Rwatschewa, N. W. (2010). “Analititscheckaja model' prozecca doctawki invormazionnogo coobshenija w becprowodnoj telekommunikazionnoj ceti”. [An analytical model of the process of delivering an information message in a wireless telecommunication network]. Radio electronic and computer systems, 5 (46), pp. 270- 276 (in Russian). 
27. Shmatkov, S. I. (2013). “Metod ozenki wremeni doctawki coobshenija w komp'juternych cetjach”. [The method of evaluation time delivery message into computer networks]. Information processing systems, 6 (113), pp. 258-261 (in Russian). 
28. Losev, Yu. I. & Zakirov, Z. Z. (2010). “Rasrabotka modeli prozecca obmena dannymi w cictemach c obratnoj cwjas'ju i adrecnym obnaruzheniem oschibok”. [Development of model of process of data exchange in systems with a feedback and address detection of mistakes]. Collection of scientific works Kharkiv University of the Air Force, 2(24), pp. 102-105 (in Russian). 
29. Semenov, S. G., Bos'ko, V. V. & Berezyuk I. A. (2012). “Iccledowanija werojatnoctnowremennych charakterictik mul'ticerwicnogo kanala cwjasi c icpol'sowaniem matematitscheckogo apparata GERT-ceti”. [Researches of probabilistictemporal descriptions of multiservice communication channel with the use of mathematical tool of GERT-network]. Information processing systems, 3 (101), 1, pp. 139-142 (in Russian). 
30. Rabinovich, V. (2014). “Diffraction by periodic graphs”. Complex Variables and Elliptic Equations, 59 (4), pp. 578-598. DOI: 10.1080/17476933.2013.767801. 
31. (2004). Pokornyj, Ju. W., Penkin, O. M., Borowckich A. W. & (other). “Divverenzial'nye urawnenija na geometritscheckich gravach”. [Differential equations on geometric graphs]. Moscow, Russian Federation, Vismatlit, 272 p. (in Russian). 
32. Zhiljakowa, L. Ju. (2015). “Gravowye dinamitscheckie modeli i ich cwojctwa”. [Graph dynamic models and their properties]. Automation and telemechanics, 8, pp.115-139 (in Russian). 
33. Ruban, O. D. (2019). “Volterra neural network construction in the nonlinear dynamic systems modeling problem”. Herald of Advanced Information Technology, Vol. 2 No. 1, pp. 24-28. DOI: 10.15276/hait.02.2019.2. 
34. Radwanska, L. N. & Makeeva E. O. (2014). “Metod predctawlenija predmetnoj oblacti komp'juterisirowannoj obutschajushej cictemy”. [Method of presentation subject area computerized training systems]. Information processing systems, 1 (117), pp. 257-261 (in Russian). 
35. Karlccon, Anderc (2017) “Model' ta metod vyjavlennja nyz'kointensyvnyh atak na prykladnomu rivni”. [Model and method of detecting low-intensity attacks at the application level]: the dissertation of the candidate of technical sciences (05.12.02). Kharkiv, Ukraine, 130 p. (in Ukrainian). 
36. Dorrer, M. G. & Zyryanov, A. A. (2014). “Ozenka tschiclowych charakterictik GERT-ceti na ocnowe jekwiwalentnych preobrasowanij”. [Evaluation of numerical characteristics GERTnetwork based on equivalent transformation]. Educational Resources and Technologies, 1 (4), pp. 175-184. 
37. Alpatov, Yu. N., Verevkin, L. V. & Lisienko, V. A. (2017). “Poctroenie peredatotschnoj vunkzii cictemy po vormule Mjesona w cimwol'noj vorme”. [Creation of a transfer function of system on Mezon's formula in a symbolical form]. Systems. Methods. Technologies, 1 (33), pp. 48-53. DOI: 10.18324/2077-5415-2017-1-48-53 (in Russian).

Received 17.12. 2019
Received after revision 05.01.2020
Accepted 28.01.2020
Published:
Last download:
24 Oct 2021

Contents


[ © KarelWintersky ] [ All articles ] [ All authors ]
[ © Odessa National Polytechnic University, 2018.]