Scientific Journal

Applied Aspects of Information Technology

INFORMATION TECHNOLOGY FOR AUTOMATED ASSESSMENT OF THE ARTILLERY BARRELS WEAR BASED ON SVM CLASSIFIER
Abstract:
An information technology for the automated assessment of the has been developed wear level has been developed. Information technology is based on the analysis of acoustic fields accompanying a shot. The acoustic field of the shot consists of a ballistic wave accompanying a projectile flying out at a supersonic speed, and a muzzle wave generated when propellant gases are ejected from the barrel. The parameters of the ballistic and muzzle waves depend significantly on the level of barrel wear. This makes it possible to construct an automatic classifier of the barrel wear level based on the analysis of informative features of acoustic signals recorded by microphones near the weapon's firing position. The information technology is based on a binary SVM classifier. A set of records of acoustic fields of shots was synthesized on the basis of real signals recorded when firing a 155 mm howitzer. From the set of records, a training and test set of information features were formed for training the classifier and assessing its quality. Methods of preliminary data normalization of training and test samples are investigated. A technique for optimizing the classifier hyperparameters with instance cross-validation has been developed. The technique is a two-stage method for finding the optimal values of hyperparameters. In the first stage, the search is performed on an exponential decimal grid. At the second stage, the optimal values of hyperparameters are refined on a linear grid. A method for the binary classification of artillery barrels according to the wear level has been formulated. Checking the classifier on a consistent test sample showed that it provides the correct classification of barrel wear with a probability of 0.94. An information technology has been developed for classifying artillery barrels by wear level based on the analysis of acoustic fields of shots. Information technology consists of three stages: data preparation, construction, training an optimization of the binary SVM classifier and the operation of the binary SVM classifier. A field experiment was carried out, which confirmed the correctness of the basic scientific and technical solutions. An automated system has been developed for classifying wellbores by wear level.
Authors:
Keywords
DOI
10.15276/aait.03.2020.1
References
1. “Prospects for the development of weapons and military equipment of the Ground Forces”. Collection of abstracts of the International Scientific and Technical Conference. Lviv, Ukraine: Hetman Petro Sahaidachnyi National Ground Forces Academy. 2018. 389 p. (in Ukrainian).
2. “Development and modernization of artillery weapons and combat use based on modern requirements”. Report scientific-practical conf. Minsk, Belarus: Belarusian State University. 2018. 103 p. (in Russian). 
3. Gusenitsa, Ya. N., Kravtsov, A. N. & Malakhov, A. V. “Method of assessing the impact of metrological support on the effectiveness of the use of weapons, military and special equipment”, Naukoemkie tekhnologii v kosmicheskih issledovaniyah Zemli. 2017; Vol. 9 No.5. 33–41 (in Russian). 
4. Litsman, A. & Nesterov, D. “Determination of the degree of influence of individual factors on the failure rate of mechanical equipment of artillery weapons during its operation”. Zbіrnik naukovih prac' Nacіonal'noї akademії Derzhavnoї prikordonnoї sluzhbi Ukraїni. Serіya: vіjs'kovі ta tekhnіchnі nauki. 2019; Vol.80 No.2. 283–299 (in Ukrainian). 
5. Goncharenko, P. D. & Haykov, V. L. “Modern means of monitoring the wear of the gun barrel”. Zbіrnik naukovih prac'. Akademіya vіjs'kovo-mors'kih sil іmenі P. S. Nahіmova. 2012; Issue 1(9). 22–27 (in Russian). 
6. “Design of special machines”, Part 1, book 1. Artillery barrels. Ed. I. Zakamenykh, V. G. Kucherova, S. E. Chervontseva. Volgograd: Russian Federation. Publ VolgGTU. 2017. 396 p. (in Russian). 
7. Pushkarev, A. M. “Elements of the theory of wear of artillery barrels”. V Vserossijskaya nauchnoprakticheskaya konferenciya “Kalashnikovskie chteniya” Materialy konferencii. Izhevsk, Russian Federation: Izhevskij institut komp'yuternyh issledovanij. 2018. 87–92 (in Russian). 
8. Li, X., Mu, L., Zang, Y. & Qin, Q. “Study on performance degradation and failure analysis of large caliber gun barrel”. Defense Technology. 2019; Vol.6(2). 362–373. DOI:10.1016/j.dt.2019.05.008. 
9. Banerjee, A., Nayak, N., Giri, D. & Bandha, K. “Effect of Gun Barrel Wear on Muzzle Velocity of a typical Artillery Shell”. International Conference on Range Technology (ICORT). Balasore, India: 2019. 1–3. DOI: 10.1109/ICORT46471.2019.9069641. 
10. Tsibulyak, B. Z. “Degradation of the parameters of artillery barrels during their operation”. Vіjs'kovo–tekhnіchnij zbіrnik. 2016; No.14. 121–126 (in Ukrainian). 
11. Goncharenko, P. D. & Khaikov, V. L. “Modern means of monitoring the wear of the gun barrel”. Zbіrnik naukovih prac' akademії vіjs'kovo-mors'kih sil іm. P. S. Nahіmova. 2012; No.1(9). 22–30 (in Russian). 
12. Pushkarev, A. M., Vershinin, A. A. & Wolf, I. G. “Assessment of wear of artillery barrels”, Izvestiya TulGU. Tekhnicheskie nauki. 2015; Issue 12. Part 1. 242–248 (in Russian). 
13. Jain, J., Soni, S. & Sharma, D. “Determination of Wear Rate Equation and Estimation of Residual Life of 155mm Autofrettaged Gun Barrel”. The International Journal of Multiphysics. 2011; Vol. 5(1). 1–8. DOI: http://dx.doi.org/10.1260/1750-9548.5.1.1. 
14. Zhitnik, V. E., Petrenko, V. M., Trofimenko, P. E. & Gridin, V. I. “Tracking the conditions of projectile departure from the bore with the help of a ballistic station”. Systemy ozbroyennya i vijs’kova texnika. 2011; No.2(26). 49–52 (in Ukrainian). 
15. Pinezich, J. D., Heller, J. & Lu, T. “Ballistic Projectile Tracking Using CW Doppler Radar”. IEEE Transactions on Aerospace and Electronic Systems. 2010; Vol.46(3). 1302–1311. DOI: 10.1109/TAES.2010.55451909. 
16. Zubkov, A. N., Kashin, S.V., Leshchenko, S. I., Lob, Ya. D., Martyugov, S. A., Naumets, N. A., Oblakevich, V. V., Savitsky, V. M. & Tokarchuk, P. A. “Artillery ballistic station of a new generation”. Artillerijskoe i strelkovoe vooruzhenie. 2009; Vol.4/2009. 15–18 (in Russian). 
17. Budaretsky, Yu. I. “A method for increasing the efficiency of firing from guns with significant barrel wear”. Sistemi ozbroєnnya і vіjs'kova tekhnіka. 2015; No.2(42). 7–9 (in Ukrainian). 
18. Zheng, D., Tan, H. & Zhou, F. “A design of endoscopic imaging system for hyper long pipeline based on wheeled pipe robot”. Advances in Materials, Machinery, Electronics. AIP Conf. Proc. 2017; Vol. 1820. 060001-1 – 060001-10. DOI: 10.1063/1.49773 https://doi.org/10.1063/1.4977316. 
19. Nikitin, I. S. & Devyatkin, V. A. “Optoelectronic system for monitoring the wear of gun bore”. Oboronnaya tekhnika. 2014. No. 10. 20–25 (in Russian). 
20. Kibum, Suh. “A design on robot system for artillery barrel inspection”. International Journal of Pure and Applied Mathematics. 2018; Vol.118 No.19. 1835–1844. DOI: 10.1063/1.497731622. 
21. Chang, H., Wu, Y.-C. & Tsung, T.-T. “Characteristics and measurement of supersonic projectile shock waves by a 32-microphone ring array”. Review of Scientific Instruments. 2011; Vol.82 Issue 8. 084902–084905. 3:10.1063/1.3622044 https://doi.org/10.1063/1.3622044. 
22. Guo, S., Ma, Q., Zhou, X. & Shao, R. “Acoustic Recognition of Artillery Projectiles by SVM”. In: Qian, Z., Cao, L., Su, W., Wang, T., Yang, H. (eds) “Recent Advances in Computer Science and Information Engineering”. Lecture Notes in Electrical Engineering. Publ. Springer. Berlin, Heidelberg: 2012; Vol.124. DOI: https://doi.org/10.1007/978-3-642-25781-0_52. 
23. Dagallier, A., Cheinet, S., Cosnefroy, M., Rickert, W., Weßling, T., Wey, P., & Juvé, D. “Longrange acoustic localization of artillery shots using distributed synchronous acoustic sensors”. The Journal of the Acoustical Society of America. 2019; Vol.146(6). 4860–4872. DOI:10.1121/1.5138927. 
24. Dobrynin, E., Maksymov, M. & Boltenkov V. “Development of a Method for Determining the Wear of Artillery Barrels by Acoustic Fields of Shots”. Eastern–European Journal of Enterprise Technologies. 2020; Vol. 3 No. 5(105). 6–18. DOI: org/10.15587/17294061.2020.206114. 
25. Dobrynin, Ye., Volkov, V., Maksymov, M. & Boltenkov, V. “The Development of Physical Models for Acoustic Wave Formation at the Artillery Shot and Study of Possibilities for Separate Registration of Various Types Waves”, Eastern-European Journal of Enterprise Technologies. 2020; Vol. 4 No.5(106). 6– 15. DOI: 10.15587/1729-4061.2020.209847. 
26. Huseby, Morten. “Noise emission data for M109, 155 mm field howitzer”. Norwegian Defence Research Establishment (FFI). 2007. 45 р. URL: https://publications.ffi.no/nb/item/asset/dspace:3388/07- 02530.pdf. DOI: 10.21236/ada299215. 
27. Al-Jasri, G. H. M., Boltenkov, V. A. & Chervonenko, P. P. “Algorithms for coope-rative detection of coolant leaks in an acoustic sensor network”. Elektrotekhnicheskie i komp'yuternye sistemy. Odessa, Ukraina: 2016; No. 21(97): 92–97 (in Russian). 
28. Hagele, D. & Schefczik, F. “Higher-order moments, cumulates and spectra of continuous quantum noise measurements”. Physical Review B. 2018; Vol.98(20). 205143-1 – 205143-23. DOI:10.1103/physrevb.98.205143. 
29. Antoni, J. & Randall, R. B. “The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines”. Mechanical Systems and Signal Processing. 2006; Vol.20(2). 308–331. DOI: org/10.1016/j.ymssp.2004.09.00. 
30. Kotsiantis, S. B., Zaharakis, I. D. & Pintelas, P. E. “Machine learning: a review of classification and combining techniques”. Artificial Intelligence Review. 2006; Vol. 26(3). 159–190. DOI: 10.1007/s10462- 007-9052-3. 
31. Yang, X.-S. “Free Lunch or No Free Lunch: That Is Not Just a Question?” International Journal on Artificial Intelligence Tools. 2012; Vol.21 No.3. 1240010-1 – 1240010-13. DOI: 10.1142/S0218213012400106. 
32. Vapnik, V. “The Nature of Statistical Learning Theory”. Publ. Springer. New York: 1995. 334 p. 
33. Awad, M. & Khanna, R. Support Vector Machines for Classification. In: Efficient Learning Machines. Publ. Apress, Berkeley, CA. 2015. 39–66. DOI:10.1007/978-1-4302-5990-9_3. 
34. Vorontsov, K. V. “Review of modern research on the problem of the quality of learning algorithms”. Tavricheskij vestnik informatiki i matematiki. 2004; No.1. 5–22 (in Russian). 
35. Sukharev, A. G., Timokhov, A. V. & Fedorov, V. V “Optimization Methods Course”. Publ. Fizmatlit. Moscow, Russian Federation: 2008. 368 p. (in Russian). 
36. Semendarov, A. V. “Selection of SVM structure and hyperparameters for efficient solution of problems of classification of electro-myography signals”. Intellektual'nyj potencial XXI veka ‘2019: Sbornik tezisov konferencii “Intellek-tual'nyj potencial XXI veka ‘2019”. Publ. KUPRIENKO S. V. Odessa, Ukraine: 2019. 1–14 (in Russian). 
37. Sizova, O. S., Idrisov, I. R. & Yurtaev, A. A. “Refinement of support vector machine (SVM) classification parameters for large-scale mapping of Arctic landscapes (White Island, Kara Sea)”. Issledovaniya Zemli iz kosmosa.2020; No.1: 5–22. DOI: 10.31857 / S0205961420020050 (in Russian). 
38. Li, Weijun & Liu, Zhenyu. “A method of SVM with Normalization in Intrusion Detection”. Procedia Environmental Sciences. 2011; Vol.11. 256–262. DOI: 10.1016/j.proenv.2011.12.040. 
39. Sahin, M. Ö., Krücker D. & Melzer-Pellmann, I.-A. “Performance and optimization of support vector machines in high-energy physics classification problems”. Nuclear Inst. and Methods in Physics Research, A.. 2016; Vol.838 Issue 1. 137–146. DOI: org/10.1016/j.nima.2016.09.017. 
40. Syarif, I., Prügel-Bennett, A. & Wills, G. B. “SVM Parameter Optimization using Grid Search and Genetic Algorithm to Improve Classification Performance”. TELKOMNIKA Telecommunication Computing Electronics and Control. 2016; Vol.14. 1502–1509. DOI: 10.12928/telkomnika.v14i4.3956. 
41. Arzamastsev, S. A., Bgatov, M. V., Kartysheva, E. N., Derkunsky, V. A. & Semen-chikov, D. N. “Predicting the subscriber churn: comparison of machine learning methods”. Komp'yuternye instrumenty v obrazovanii. 2018; No. 5. 5-23. DOI: 10.32603 / 2071-2340-2018-5-5-23 (in Russian). 
42. Raschka, S. “Python Machine Learning”. Birmingham-Mumbai: Packt Publishing. 2015. 454 p. 
43. Subbotenko, A. V. “Algorithm of Instance Recognition Based on the Support Vector Machine”. Informaciya i Kosmos. 2014; No.2. 47–53 (in Russian). 
44. Batura, T. V. “Methods for automatic classification of texts”. Software products and systems. 2017; Vol.30 No.1. 85–91. DOI: 10.15827 / 0236-235X.117.085-099 (in Russian). 
45. Borodinov, A. A. & Myasnikov, V. V. “Comparison of classification algorithms in the problem of object recognition on radar images of the MSTAR base”. Sbornik trudov III mezhdunarodnoj konferencii i molodezhnoj shkoly “Informacionnye tekhnologii i nanotekhnologii” (ITNT-2017). Publ. New Technology. Samara, Russian Federation: 2017. 732–736 (in Russian).


Received 20.08 .2020
Received after revision 15.09 .2020
Accepted 23.09. 2020
Published:
Last download:
24 Oct 2021

Contents


[ © KarelWintersky ] [ All articles ] [ All authors ]
[ © Odessa National Polytechnic University, 2018.]