Scientific Journal

Applied Aspects of Information Technology

COMPLEX-SHAPED PARTS GRINDING TECHNOLOGY INFORMATION ENSURING
Abstract:
A method of computer-aided design and manufacture of complex-shaped parts of machines and implants from difficult-tomachine materials (titanium, cobalt-chromium alloys, zirconium dioxide, etc.) has been developed, based on the principles of building an integrated CAD/CAM/CAE system of computer-aided designing and a hierarchical intelligent numerical control system. It is shown that kinematical mechanisms created over the past several centuries do not allow reproducing with the required accuracy the joints movement of living organisms for their use in biomedical implantation technologies. Therefore, the worn out joints of living organisms are reconstructed by adding complex-shaped parts from these difficult-to-machine materials. Information about the geometric shape of these parts (3D model) at the pre-production stage is obtained using modern methods of computed tomography and magnetic resonance imaging, and at the production stage the actual location of the stock grinding allowance is measured by laser (or tactile) scanning. To reduce the unevenness of the position of the grinding stock allowance, the workpiece of a complex-shaped part before grinding is oriented in the coordinate system of a CNC machine based on the established criterion for minimizing the allowance. An example of such orientation of the gear workpiece is given. This workpiece is measured with a Renishaw tactile probe on the left and right sides of the gear valleys before gear grinding. Both the minimum allowance on the left and right sides of the valleys and the difference between them are determined, and then additionally the gear wheel blank is rotated in the appropriate direction to align these minimum values detected. In turn, the aligned minimum allowances, should be sufficient to compensate for the influence of technological factors from the previous operation and the error in setting the workpiece for this operation. For complex-shaped implants, such an additional orientation is performed, for example, according to algorithms for ensuring the minimax value of the allowance.
Authors:
Keywords
DOI
10.15276/aait.04.2020.3
References
1. Krainev, A. F. “Mechanism Reference Dictionary”, 2nd edition revised and enlarged. Mechanical engineering. Moscow. Russian Federation: 1987. 560 p. (in Russian). 
2. Brazel, E., “Power and Position-Oriented Process Monitoring of Freeform Abrasive Machining”. A thesis submitted to the University of Dublin in partial fulfillment of the requirements for the degree of Doctor in Philosophy. 2013. 206 p. 
3. Petrakov, Y. & Shuplietsov, D. “Programming of adaptive machining for end milling”. Mechanics and Advanced Technologies. 2017; 1(79): 34–40. 
4. Brazel, E., Hanley, R., Cullinane, R. et al. Position-oriented process monitoring in freeform abrasive machining. Int J Adv Manuf Technol 69. 2013. p.1443–1450. DOI: org/10.1007/s00170-013-5111-x. 
5. Ramsden, J. J., Allen, D. M., Stephenson, D. J., Alcock, J. R., Peggs, G. N., Fuller, G. & Goch, G. “The design and manufacture of biomedical surfaces”. CIRP Ann Manuf Technol. 2007; 56(2): 687–711. 
6. Tönshoff, H. K., Friemuth, T. & Becker. J. C. “Process monitoring in grinding”. CIRP Ann Manuf Technol. 2002; 51(2): 551–571. 
7. Klocke, F., Kratz, S., Auerbach, T., Gierlings, S., Wirtz, G. & Veselovac, D. “Process monitoring and control of machining operations”. Int J Autom Technol. 2011; 5(3): 403–411. 
8. Teti, R., Jemielniak, K., O'Donnell, G. & Dornfeld, D. “Advanced monitoring of machining operations”. CIRP Ann Manuf Technol. 2010; 59(2): 717–739. 
9. Jemielniak, K. “Commercial tool condition monitoring systems”. Int J Adv Manuf Technol. 1999; 15(10): 711–721. 
10. Lima, P. U. & Saridis, G. N. “Design of intelligent control systems based on hierarchical stochastic automata”. World Scientific Publishing Co. Pte. Ltd. Singapore. 1996. 155p. 
11. Kyratsis, P., Kakoulis, K. & Markopoulos, A. P.: “Advances in CAD/CAM/CAE”. Technologies/Machines. 2020; 8, 13. DOI: org/10.3390/machines8010013. 
12. Wang, L. & Chen, Z. C. “A new CAD/CAM/CAE integration approach to predicting tool deflection of end mills”. Int J Adv Manuf Technol. 2014; 72: 1677–1686. 
13. Wang, L. M. “A new CAD/CAM/CAE integration approach to modelling flutes of solid end-mills”. A thesis in the department of mechanical and industrial engineering. Montreal Quebec. Canada: 2014; 147 p. 
14. Wagner, E. “A new optimization CAD/CAM/CAE techniques for the processing of the complex 3D surfaces on 5 axes CNC machines”. Procedia Technology. 2015; 19:34–39. 
15. Wang, J., Niu, W., Ma, Y. et al. “A CAD/CAE-integrated structural design framework for machine tools”. Int J Adv Manuf Technol. 2017; 91: 545–568. 
16. Kountanya, R., Guo, C. “Specific material removal rate calculation in five-axis grinding”. Journal of Manufacturing Science and Engineering-transactions of the ASME. 2017;139: 121010-1 – 121010-6. 
17. Jin, T., Yi, J. Li, P. “Temperature distributions in form grinding of involute gears”. Int J Adv Manuf Technol. 2017; 88: 2609–2620. 
18. Malkin, S., Guo, C. “Thermal analysis of grinding”. CIRP Annals Manufacturing Technology. 2007; 56 (2): 760–782. 
19. Lishchenko, N., Larshin, V. “Profile gear grinding temperature determination”. In: 4th International Conference on Industrial Engineering. ICIE, Lecture Notes in Mechanical Engineering. Publ. Springer, 2019. p.1723–1730. DOI: 10.30929/1995-0519.2018.1.100–108. 
20. “A systematic method for grinding wheel performance evaluation”. – Available at: https://www.semanticscholar.org/paper/A-Systematic-Method-for-Grinding-Wheel-PerformanceMcspadden-Hughes/3721ff16ac64dbc08fb75e0911bc2542ea3d1da2. – [Accessed: 21th June 2020]. 
21. Weinert, K., Blum, H., Jansen, T. et al. „Simulation based optimization of the NC-shape grinding process with toroid grinding wheels”. Prod. Eng. Res. Devel. 2007; 1: 245–252.
22. Berend Denkena, Luis de Leon & Leif Behrens. “Contact conditions in 5-axis-grinding of double curved surfaces with toric grinding wheels”. Advanced Materials Research. 2010; Vol. 126-128: 41–46. DOI: 10.4028/www.scientific.net/AMR.126-128.41. 
23. Heinzel, C., Sölter, J., Jermolajev, S., Kolkwitz, B. & Brinksmeier, E. “A Versatile Method to Determine Thermal Limits in Grinding”. 2nd CIRP Conference on Surface Integrity (CSI) Procedia CIRP 13. 2014. p.131–136. 
24. Patil Prashant & Patil Chandrakant. “FEM Simulation and Analysis of Temperature Field of Environmental Friendly MQL Grinding”. Proceedings of the international conference on communication and signal processing 2016 (ICCASP/ICMMD-2016). Published by Atlantis Press. 2017. p.182–186. 
25. Jun, Yi, Wei, Zhou & Zhaohui, Deng. “Experimental Study and Numerical Simulation of the Intermittent Feed High-Speed Grinding of TC4 Titanium Alloy Metals”. Metals. 2019; 9(7): 802. DOI: 10.3390/met9070802. 
26. Lan, S. & Jiao, F. “Modeling of heat source in grinding zone and numerical simulation for grinding temperature field”. Int J Adv Manuf Technol. 2019; 103: 3077–3086. 
27. “Technologies – balancing, acoustic & vibration sensors”. – Available at: https://www.marposs.com/eng/application/technologies-balancing-acoustic-vibration-sensors. – [Accessed: 21th June 2020]. 
28. Koenig, W., Altintas, Y. & Memis, F. “Direct adaptive control of plunge grinding process using acoustic emission (AE) sensor”. International Journal of Machine Tools and Manufacture. 1995; Vol. 35: 1445–1457. 
29. Alexandre, F. A., Lopes, W. N. & Lofrano Dotto, F. R. et al. “Tool condition monitoring of aluminum oxide grinding wheel using AE and fuzzy model”. Int J Adv Manuf Technol. 2018; 96: 67–79. 
30. Chien-Sheng Liu & Yang-Jiun Ou. “Grinding Wheel Loading Evaluation by Using Acoustic Emission Signals and Digital Image Processing”. Sensors. 2020; 20, 4092. DOI:10.3390/s20154092. 
31. Zheng Zhao, Chenggang Hou & Shengnan Duan. “Online Intelligent Monitoring System of Grinding Process Based on Process Modeling”. Second International Conference on Instrumentation & Measurement, Computer, Communication and Control. 2012. p.327–330. 
32. Tian, Y. B., Liub, F., Wang, Y. & Wu, H. “Development of portable power monitoring system and grinding analytical tool”. Journal of Manufacturing Processes. 2017; Vol. 27: 188–197. 
33. Amelia Nápoles Alberro , Hernán A. González Rojas, Antonio J. Sánchez Egea , Saqib Hameed & Reyna M. Peña Aguilar. “Model Based on an Effective Material-Removal Rate to Evaluate Specific Energy Consumption in Grinding”. Materials. 2019; 12. 939. DOI:10.3390/ma12060939. 
34. Larshin, V. & Lishchenko N. “Adaptive Profile Gear Grinding Boosts Productivity of this Operation on the CNC Machine Tools”. In: Ivanov V. et al. (eds.). Advances in Design, Simulation and Manufacturing. DSMIE 2018. Lecture Notes in Mechanical Engineering. Publ. Springer, Cham. Germany: 2019. 
35. Lishchenko, N. & Larshin, V. “Grinding Temperature Model Simplification for the Operation Information Support System”. Scientific Journal Herald of Advanced Information Technology. Publ. Nauka i Tekhnika. Odessa: Ukraine. 2019; Vol. 2 No.3:197–205. DOI: 10.15276/hait.03.2019.3. 
36. Lishchenko, N. & Larshin, V. “Temperature Models for Grinding System State Monitoring”. Applied Aspects of Information Technology. Publ. Science and Technical. Odessa. Ukraine: 2019; Vol.2 No.3: 216–229. DOI: 10.15276/aait.03.2019.4. 
37. Lishchenko, N. & Larshin, V. “Comparison of Measured Surface Layer Quality Parameters with Simulated Results”. Applied Aspects of Information Technology. Publ. Nauka i Tekhnika. Odessa. Ukraine: 2019; Vol. 2 No.4: 304–316. DOI: 10.15276/aait.02.2019.5. 
38. Carslaw, H. S. & Jaeger, J. C. “Conduction of Heat in Solids”. Oxford University Press. Oxford. 1959. 510 p. 
39. Lishchenko, N. & Larshin. V. “Temperature Field Analysis in Grinding”. Lecture Notes in Mechanical Engineering. Publ. Springer. 2020. p.199–208. DOI: 10.1007/978-3-030-22365-6_20. 
40. Lishchenko, N. & Larshin, V. “Gear-Grinding Temperature Modeling and Simulation”. Lecture Notes in Mechanical Engineering. Publ. Springer. 2020. p.289–297. DOI: 10.1007/978-3-030-22063-1_32. 
41. Oleksandr V. Komarov. “Reducing the Search Area of Genetic Algorithm Using Neural Network Autoencoder”. Scientific Journal Herald of Advanced Information Technology. Publ. Nauka i Tekhnika. Odessa. Ukraine: 2020; Vol.3 No.3: 113–124. DOI:10.15276/hait.03.2020.1.
42. Anastasiia P. Dydyk, Olena K. Nosovets, Vitalii O. Babenko. “Setting up the Genetic Algorithm for the Individualized Treatment Strategy Searching”. Scientific Journal Herald of Advanced Information Technology. Publ. Nauka i Tekhnika. Odessa. Ukraine: 2020; Vol.3 No.3: 125–135. DOI:10.15276/hait.03.2020.2.
43. Galina Yu. Shcherbakova, Viktor N. Krylov, Olha E. Plachinda. “Determination of Characteristic Points of Electrocardiograms Using Multi-Start Optimization with a Wavelet Transform”. Scientific Journal. Herald of Advanced Information Technology. Publ. Nauka i Tekhnika. Odessa. Ukraine: 2020; Vol.3 No.2: 23–33. DOI:10.15276/hait.02.2020.2. 
44. Yuriy V. Khoma, Miroslaw Szmajda & Mariusz Pelc. “Development of Scientific-Methodological Approaches of Machine Learning Application in Biosignals Processing”. Scientific Journal. Herald of Advanced Information Technology. Publ. Nauka i Tekhnika. Odessa. Ukraine: 2020; Vol.3 No.1: 383–394. DOI:10.15276/hait.01.2020.5. 
45. Denis S. Shibaev, Vladimir V. Vychuzhanin, Nikolay M. Rudnichenko, Natalia O. Shibaeva & Tatyana V. Otradskaya. “Data Control in the Diagnostics and Forecasting the State of Complex Technical Systems”. Scientific Journal. Herald of Advanced Information Technology. Publ. Nauka i Tekhnika. Odessa. Ukraine: 2019; Vol.2 No.3: 183–196. DOI:10.15276/hait.03.2019.2. 
46. Vasily P. Larshin, Natalia V. Lishchenko & Jan Pitel. “Intermittent Grinding Temperature Modeling for Grinding System State Monitoring”. Applied Aspects of Information Technology. Publ. Science i Technical. Odessa. Ukraine: 2020; Vol.3 No.2: 58–73. DOI: 10.15276/aait.02.2020.4. 
47. Olexandr N. Romanyuk, Sergey I. Vyatkin, Svetlana G. Antoshchuk, Pavlo I. Mykhaylov & Roman Yu. Chekhmestruk. “Blending Functionally Defined Surfaces”. Applied Aspects of Information Technology. Publ. Science i Technical. Odessa. Ukraine: 2019; Vol.2 No.4: 271–282. DOI: 10.15276/aait.04.2019.2.
Published:
Last download:
12 May 2021

Contents


[ © KarelWintersky ] [ All articles ] [ All authors ]
[ © Odessa National Polytechnic University, 2018.]