Scientific Journal

Applied Aspects of Information Technology

The work is devoted to solving the scientific and practical problem of automating the heart’s electrical axis calculation to improve the quality of morphological analysis of biomedical signals with locally concentrated features in cardiological decision support systems, which in turn reduces the likelihood of medical errors. The work shows that existing methods for in the determining the electrical axis of the heart require morphological analysis of an electrocardiogram. The method is based on determining the integral signal in the frontal plane from all limb leads, taking into account the lead angle in the hexaxial reference system. In graphic form in polar coordinates, the integral electrocardiological signal is a figure, predominantly elongated along the axis, the direction’n of which corresponds to the heart’s electrical axis. The position of the heart’s electrical axis is calculated as the angle between the axis of standard lead I and the vector, the end of which is at the center of mass of the locus of the points the farthest away from the reference point. Cluster analysis is used to find the most distant points from the reference point. The proposed method for of calculating the heart’s electrical axis makes it possible not to carry out a preliminary morphological analysis of an electrocardiogram. To implement the method proposed in the article, a program was written in the Matlab language, which is connected as a dynamic link library to the cardiological decision support system “TREDEX telephone” operating as part of the medical diagnostic complex “TREDEX” manufactured by “Company TREDEX” LLC, Kharkiv. Verification of the results was carried out using a database of electrocardiograms, which were recorded using a transtelephone digital 12-channel electrocardiological complex “Telecard”, which is part of the medical diagnostic complex “TREDEX”, and deciphered by cardiologists of the communal non-profit enterprise of the Kharkiv Regional Council “Center for Emergency Medical aid and disaster medicine”. Comparison of the results of calculating the heart’s electrical axis according to electrocardiograms by a doctor and automatically using the proposed method showed that in the overwhelming majority of cases the decisions made coincide. At the same time, cardiologists make mistakes, and errors are made during automatic calculation using the proposed method. The paper explains the reasons for these errors.
1. Pavlovich, R. V. “All-Ukrainian telemedicine network of remote ECG diagnostics “Telecard”: year 2017” [Electronic resource]. – Available from: – Title from the screen (in Russian). – [Accessed: 23.02.2021].
2. Salih, S. K., Aljunid, S. A., Yahya, A. & Ghailan, K. “A Novel Approach for Detecting QRS Complex of ECG signal”. International Journal of Computer Science Issues. 2012; Vol. 9 (6): 205–215.
3. Karimipoura, A. & Homaeinezhad, M. R. (2014). “Real-time electrocardiogram P-QRS-T detection-delineation algorithm based on quality-supported analysis of characteristic templates”. Computers in Biology and Medicine. 2014: Vol. 52: 153–165. DOI: 10.1016/j.compbiomed.2014.07.002.
4. Chaikovsky, I. A. “The analysis of the electrocardiogram in one, six and twelve leads in terms of information value: a electrocardiographic cascade”. Clinical informatics and telemedicine (in Russian). 2013; Vol. 9(10): 48–58.
5. Mattu, A, Tabas, J. A. & Brady, W. J. “Electrocardiography in Emergency, Acute, and Critical Care”. Publ. American College of Emergency Physicians (ACEP); 2nd edition: 2019. 330 p.
6. Brady, W. J., Lipinski, M. J. et al. “Electrocardiogram in Clinical Medicine”. Publisher: Wiley-Blackwell; 1st edition: 2020. 512 p.
7. Hampton, J. “The ECG Made Practical”. Publisher: Elsevier; 7th edition: 2019. 384 p.
8. Fainzylberh, L. S. “A generalized method for processing cyclic signals of complex shape in a multidimensional parameter space”. International Scientific and Technical Journal “Problems of control and informatics” (in Russian). 2015; Vol. 2: 58–71.
9. Shcherbakova, G. Yu., Krylov, V. N. & Plachinda, O. E. “Determination of Characteristic Points of Electrocardiograms Using Multi-Start Optimization with a Wavelet Transform”. Scientific Journal Herald of Advanced Information Technology. Publ. Nauka i Tekhnika. Odessa: Ukraine. 2020; Vol.3 No.2: 23–33. DOI:10.15276/hait.02.2020.2.
10. Kligfield, P., Gettes, L. S., Bailey, J. J. & others. “Recommendations for the standardization and interpretation of the electrocardiogram”. Part I: “The electrocardiogram and its technology: a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society”. Circulation. 2007; Vol. 115: 1306–1324. DOI: 10.1016/j.jacc.2007.01.024.
11. Ashcheulova, T. V., Kovaleva, O. N. & Safargalina-Kornilova, N. A. “Electrocardiographic research method. Method of registration and decoding of electrocardiogram”. Publ. Kharkiv National Medical University (in Russian). Kharkiv: Ukraine. 2016: 16 p.
12. Taqatqa, A., Muller, B., Al-kubaisi, M., Jamil, O., Awad, S., & Abdulla, R. “Cardiac Axis: Calculation and Interpretation”. Pediatric Electrocardiography. Publ. Springer, Cham. 2016: p.19–29. DOI:10.1007/978-3-319-26258-1_3.
13. Bouthillet, T. “Cardiac Axis Determination” [Electronic resource]. – Available from: – Title from the screen. – [Accessed: 10.02.2021].
14. Cadogan, M. & Buttner R. “ECG Axis Interpretation” [Electronic resource]. – Available from: – Title from the screen. – [Accessed: 03.02.2021].
15. Hoseini, S. S., Moeeny, A., Shoar, S., Shoar, N., Naderan1, M., Gharibzadeh, S. H. & Dehpour, A. R. “Designing Nomogram for Determining the Heart’s QRS Axis”. Journal of Clinical and Basic Cardiology. 2011; Vol. 14 (1-4): 12–15.
16. Roberts, David A., “Mastering the 12-Lead EKG”. Springer Publishing Company; 2nd edition: 2019. 515 p. DOI: 10.1891/9780826181947.
17. Lacey Buckler & Vicki Turner. “Determining axis deviation”. Nursing Critical Care. May 2008; Vol. 3(3): 5-9. DOI: 10.1097/
18. David Andreu, Juan Fernández-Armenta, Juan Acosta, Diego Penela, Beatriz Jáuregui, David Soto-Iglesias, Vladimir Syrovnev, Elena Arbelo, José María Tolosana & Antonio Berruezo. “A QRS axis-based algorithm to identify the origin of scar-related ventricular tachycardia in the 17-segment American Heart Association model”. Heart Rhythm. 2018; Vol. 15 (10): 1491–1497. DOI: 10.1016/j.hrthm.2018.06.013. 
19. Storkås, H.S., Hansen, T.F., Tahri, J.B., Lauridsen, T.K., Olsen, F.J., Borgquist, R., Vinther, M, Lindhardt, T.B., Bruun, N.E., Søgaard, P. & Risum, N. “Left axis deviation in patients with left bundle branch block is a marker of myocardial disease associated with poor response to cardiac resynchronization therapy”. Journal of Electrocardiology. Nov.-Dec. 2020; Vol. 63: 147–152. DOI: 10.1016/j.jelectrocard.2019.04.007.
20. Hideyuki Hara, Shinichi Niwano, Hiroshi Ito, Masahiro Karakawa & Junya Ako. “Evaluation of R-wave offset in the left chest leads for estimating the left ventricular activation delay: An evaluation based on coronary sinus electrograms and the 12-lead electrocardiogram”. Journal of Electrocardiology. March-April
2016; Vol. 49(2): 148–153. DOI: 10.1016/j.jelectrocard.2015.12.001.
21. Qingyu Wang, Shuo Pan, Fuqiang Liu, Dan Yang & Jun-kui Wang. “Extreme Right Axis Deviation in Acute Myocardial Infarction: A Hazardous Signal of Poor Prognosis”. American Journal of Case Reports. 2018; Vol. 19: 553–556. DOI: 10.12659/AJCR.908486.
22. Gabor Kovacs, Xhylsime Kqiku, Vasile Foris, Maria Tscherner, Natascha Troester, Stefan Scheidl, Christian Hesse & Horst Olschewski. “Right axis deviation is a strong indicator of pulmonary hypertension in a risk population”. European Respiratory Journal. 2011; Vol. 38 (55): 2339.
23. Povoroznyuk, A. I., Filatova, A. E., Zakovorotniy, A. Yu. & Shehna, Kh. “Development of method of matched morphological filtering of biomedical signals and images”. Automatic Control and Computer Sciences. 2019; Vol. 53 (3): 253–262. DOI: 10.3103/S014641161903009X.
24. Filatova, A. E. “Experimental verification of the structural identification method of quasiperiodic signals”. Information and control systems for railway transport (in Russian). 2001; Vol. 3: 60–63.
25. Filatova, A. E. “Synthesis of decision rules with different threshold functions for structural identification of biomedical signals”. Herald NTU “KhPI”. Publ. NTU “KhPI” (in Russian). Kharkiv: Ukraine. 2006; Vol. 23: 160–163.
26. Povoroznyuk, A. I. & Filatova, A. E. “Determination of the adaptive threshold for structural identification of biomedical signals”. Herald NTU “KhPI”. Publ. NTU “KhPI” (in Russian). Kharkiv: Ukraine. 2003; Vol. 19: 125–128.
27. Anoop, U. R., Ramesh, Verma, K. & Narayanan. “The ECG made easy for the dental practitioner”. Indian Journal of Dental Research. 2014; Vol. 25 (3): 386–389. DOI: 10.4103/0970-9290.138349. 28. David H. Spodick, Mary Frisella & Sirin Apiyassawat. “QRS Axis Validation in Clinical Electrocardiography”. American Journal of Cardiology. Publ. Elsevier Inc. 2008; Vol. 101 (2): 268–269. DOI: 10.1016/j.amjcard.2007.07.069.
29. Bhatia, S., Yun, L., Munir, S., Gomez, M.E. & Aly, A. “EKG Interpretation” [Electronic resource]. – Available from: – Title from the screen. – [Accessed: 27.02.2021].
30. Qijun Gao, Zhiguo Dai, Yingfu Hu, Fang Bie & Bo Yang. “A new method to determine the QRS axis–QRS axis determination”. Clinical Cardiology. 2020; 43(5): 1534–1538. DOI: 10.1002/clc.23477. 31. Rasmus Dahl & Ronan Berg/ “Trigonometry of the ECG. A formula for the mean electrical axis of the heart”. Physiology News. 2020; Issue 120: 25-27. DOI: 10.36866/pn.120.25.
32. Singh, P. N. & Athar, M. Sajjad. “Simlified Calculation of Mean QRS Vector (Mean Electrical Axis of Heart) of Electrocardiogram”. Indian Journal of Physiology and Pharmacology. 2003; Vol. 47 (2):212–216.
33. Dragutin Novose, Noll G. & Lüscher T. F. “Corrected formula for the calculation of the electrical heart axis”. Croatian Medical Journal. 1999; Vol. 40 (1): 77–79.
34. Madhulatha, T. Soni. “An Overview on Clustering Methods”. IOSR Journal of Engineering. Apr. 2012; Vol. 2(4): 719-725.
35. Balouchestani, M. & Krishnan, S. “Fast clustering algorithm for large ECG data sets based on CS theory in combination with PCA and K-NN methods”. 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago: IL, USA. 2014: 98–101. DOI: 10.1109/EMBC.2014.6943538.
36. Komleva, N. O., Liubchenko, V. V. & Zinovatnaya, S. L. “Methodology of Information Monitoring and Diagnostics of Objects Represented by Quantitative Estimates Based on Cluster Analysis”. Applied Aspects of Information Technology. Publ. Nauka i Tekhnika. Odessa. Ukraine: 2020; Vol.3 No.1: 376–392. DOI: 10.15276/aait.01.2020.1.
Last download:
22 Oct 2021


[ © KarelWintersky ] [ All articles ] [ All authors ]
[ © Odessa National Polytechnic University, 2018.]