Scientific Journal

Applied Aspects of Information Technology

Information is transmitted by signals that have a material-and-energy nature, but it is not matter and not energy. The in-formation ensures communication of interacting objects of alive and inanimate nature. Information and communications technology underlie the new production paradigm called the “Industry 4.0”. In accordance with this paradigm, increased attention is paid to the pre-production phase on which relevant comprehensive solutions for the automation of design and production are taken, ranging from receiving an order for the product and ending with its shipment to the consumer. At the same time, issues of production management and efficient control of technological processes are solved, including scheduling and material requirement planning. At the pre-production phase, a virtual product is created (the information model of the real product in the form of a “virtual reality”), and at the execution phase a real (physical) product appears, which has a use value (possession utility). The implementation phase begins only after systemic computer modeling, simulation, and optimization of the technological process and operations, that is, after assessing both the time and the cost of virtual technological processes. In this regard, this research discusses topical issues of interaction between virtual information at the pre-production (preparatory) phase and new information arising at the implementation phase of physical technology in terms of improving the efficiency of computer-integrated production. It is shown that the information is a basic category not only in information (virtual) technology for its transformation and transmission, but also in physical technology of material production at the stage of manufacturing the appropriate material product, on the one hand, and (by analogy) in the process of distance learning of specialists, on the other hand (although information is not knowledgeable yet). Particular attention is paid to measuring procedure and assessing its accuracy; this work is not formal and requires the use of an intellectual system to ensure the accuracy of the information received.

1. Wang, W. “Difference between the Real World and Virtual World”. Proceedings. 2020; 47(1): 35.   DOI: 10.3390/proceedings2020047035.

2. Lerner, V. “Reality, Information, and Information Observer”. Proceedings. 2020; 47(1): 10.  DOI: 10.3390/proceedings2020047010.

3. Lishchenko, N. & Larshin, V.  “Gear-Grinding Temperature Modeling and Simulation”. Lecture Notes in Mechanical Engineering. Springer. 2020: р.289–297. DOI: 10.1007/978-3-030-22063-1_32.

4. Larshin, V. & Lishchenko, N. “Technological processes and systems automation principles”. In  Kotlik S.V. editor.  On the way to Industry 4.0: Information Technology, Modeling and Artificial Intelligence, Automation: Monograph. Astroprint. Odessa: Ukraine. 2021. p.121–131.

5. Hitoni, K. “Strategic integrated manufacturing systems: the concept and structures”. International Journal of Production Economics. 1991; 25 (1-3): 5–12. DOI:

6. Bharath, V. & Patil, R. “Virtual Manufacturing: A Review”.  International Journal of Engineering Re-search & Technology (IJERT). NCERAME-2015 Conference Proceeding. 2015; 3(17). 

7. PMP “Project Management Professional Study Guide”. McGraw-Hill Professional, 2003.

8. Atkinson, R. “Project management: cost, time and quality, two best guesses and a phenomenon, it’s time to accept other success criteria”. International Journal of Project Management. 1999; 17 (6): 337–342. DOI: 10.1016/S0263-7863(98)00069-6.

9. Larshin, V. & Lishchenko, N. “Complex-Shaped Parts Grinding Technology Information Ensuring”. Applied Aspects of Information TechnologyPubl. Science i Technical.  Odesa: Ukraine. 2020; 3(4): 246–262. DOI: 10.15276/aait.04.2020.3.

10. Tönshoff, H., Friemuth, T. & Becker, J. “Process monitoring in grinding”. CIRP Annals. Manufacturing Technology. 2002; 51(2): 551–571.

11. Chopta, A. “Dynamics of structures: theory and applications to earthquake engineering”. Prentice Hall, Inc, 1995. 794 p.

12. Klocke, F. “Manufacturing Processes 2: Grinding, Honing and Lapping”. Springer. Berlin: Germany. 2009. 433 p.

13. Blumenstein, V. & Krechetov, А. “Regularities of technological inheritance in the categories of loading programs”. IOP Conference Series: Materials Science and Engineering. 1029 (2021) 012012. 2021. DOI:10.1088/1757-899X/1029/1/012012.

14. Emelyanov, V., Lin, D. & Sholokh, V. “Methods for processing measurement results in the laboratory of the physical training: textbook”.  Bestprint   (in Russian).  Minsk: Belarus. 1997. 90 p. 

15. Novitsky, P. & Zograf, I. “Estimation of errors of measurement results”. 2nd ed.: Energoatomizdat. (in Russian). Leningrad: Russian Federation (in Russian). 1991. 304 p. 

16. Rego, K. “Metrological processing of the results of technical measurements”. Tekhnika. Kiev: Ukraine (in Russian).1987. 128 p. 

17. Nikolaev, E. “Towards intelligent control system for computer numerical control machines”. IOP Conf. Series: Materials Science and Engineering. 2019. 537(3). DOI:10.1088/1757-899X/537/3/032085.

18. Nee, A. Y. C. & Ong, S. K. “Virtual and Augmented Reality Applications in Manufacturing”. IFAC Proceedings Volumes. 2013; 46 (9): 15–26. DOI:

19. Lishchenko, N. & Larshin, V. “Temperature Field Analysis in Grinding”.  Lecture Notes in Mechanical EngineeringSpringer. 2020: p.199-208. DOI: 10.1007/978-3-030-22365-6_20.

20. Lishchenko, N. & Larshin, V. “Gear-Grinding Temperature Modeling and Simulation”. Lecture Notes in Mechanical EngineeringSpringer. 2020: p.289–297. DOI: 10.1007/978-3-030-22063-1_32.

21. Komarov, О. “Reducing the Search Area of Genetic Algorithm Using Neural Network Autoencoder. Scientific Journal Herald of Advanced Information Technology. Publ. Science i Technical. Odesa: Ukraine.  2020; 3(3): 113–124.  DOI:10.15276/hait.03.2020.1.

22.  Dydyk, A., Nosovets, O. & Babenko, V. “Setting up the Genetic Algorithm for the Individualized Treatment Strategy Searching”.  Scientific Journal Herald of Advanced Information Technology. Publ. Science i Technical. Odesa: Ukraine.  2020; 3(3): 125–135. DOI:10.15276/hait.03.2020.2.

23. Shcherbakova, G, Krylov, V. & Plachinda O. “Determination of Characteristic Points of Electrocardiograms Using Multi-Start Optimization with a Wavelet Transform. Scientific Journal Herald of Advanced Information Technology. Publ. Science i Technical. Odesa: Ukraine. 2020; 3(2): 23–33.  DOI:10.15276/hait.02.2020.2.

24. Khoma, Y, Szmajda, M. & Pelc, M. “Development of Scientific-Methodological Approaches of Machine Learning Application in Biosignals Processing”. Scientific Journal Herald of Advanced Information Technology. Publ. Science i Technical. Odesa: Ukraine. 2020; 3(1): 383–394. DOI:10.15276/hait.01.2020.5.

25. Shibaev, D., Vychuzhanin, V., Rudnichenko, N., Shibaeva, N. & Otradskaya, T. “Data Control in the Diagnostics and Forecasting the State of Complex Technical Systems”. Scientific Journal Herald of Advanced Information Technology. Publ. Science i Technical. Odesa: Ukraine. 2019; 2(3): 183–196. DOI:10.15276/hait.03.2019.2.   

26.  Larshin, V., Lishchenko, N. &  Piteľ, Ján. “Intermittent Grinding Temperature Modeling for Grinding System State Monitoring”. Applied Aspects of Information Technology. Publ. Science i Technical. Odesa: Ukraine.  2020; 3(2): 58–73.  DOI:10.15276/aait.02.2020.4.

27. Romanyuk, O, Vyatkin, S., Antoshchuk, S., Mykhaylov, P. & Chekhmestruk, R. “Blending Functionally Defined Surfaces”. Applied Aspects of Information Technology. Publ. Science i Technical. Odesa: Ukraine. 2019; 2(4): 271–282. DOI:10.15276/aait.04.2019.2.

Last download:
7 May 2021


[ © KarelWintersky ] [ All articles ] [ All authors ]
[ © Odessa National Polytechnic University, 2018.]