Scientific Journal

Applied Aspects of Information Technology

DYNAMIC PERFORMANCES OF THE SHUNT ACTIVE POWER FILTER CONTROL SYSTEM
Abstract:

Harmonic pollution of the electrical mains is well known and well-studied phenomena. Active power filter being a powerful tool to meet the requirements of regulatory documents regulating the electricity quality. Despite this fact, practical implementation of the active power filter is still connected with significant difficulties. In particular, existing systems typically use fast Fourier transform methods or instantaneous power theory to estimate the harmonic composition of the mains current. However, the use of fast Fourier transform requires high computing power of the control system, and the implementation of the theory of instantaneous power significantly increases the requirements for the power part of the active filter. The application of another approach - selective compensation of harmonics, makes it possible to reduce computational requirements and significantly simplify the technical implementation of the active filter and at the same time to achieve an acceptable level of distortion compensation. In this paper, the shunt active power filter control system is designed and investigated. Proposed control system consist of selective harmonics observer, feedback-linearizingcurrent controller, dc-link controller and mains voltage observer. Harmonics observer is tuned according to simplified approach, provides selective estimation of the load current harmonics and produce the compensation current reference for the current controller. Nonlinear dc-link voltage controller guarantees decoupled from current compensation process asymptotic regulation of the average dc-link voltage. Mains voltage vector adaptive observer provides magnitude, angular position and frequency estimation. Proposed control system is implemented on digital signal processor TMS320F28335 end verified experimentally. Results of experimental investigations together with results of simulations confirm effectiveness of proposed solution. Developed control system can be used for shunt active filters implementation.

Authors:
Keywords
DOI
10.15276/aait.01.2021.4
References
  1. “IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems”. IEEE Std 519-2014 Revis. IEEE Std 519-1992, p. 1–29.
  2. Motta L. & Faúndes N. “Active / passive harmonic filters: Applications, challenges trends”. In 2016 17th International Conference on Harmonics and Quality of Power (ICHQP). Oct. 2016. p.657–662. DOI: 10.1109/ICHQP.2016.7783319.
  3. Kazem H. A. “Harmonic mitigation techniques applied to power distribution networks”.  Advances in Power Electronics. 2013. p. 1–10. 
  4. Morán, L. Dixon, J. & Torres, M. “41 – Active Power Filters”. In Power Electronics Handbook (Fourth Edition). M. H. Rashid, Ed. Butterworth-Heinemann. 2018. p. 1341–1379.
  5. Dugan, R. C. Santoso, S. McGranaghan, M. F. & Beaty, H. W. “Electrical Power Systems Quality”. New York: McGraw Hill Professional. 2002. 546 p.    
  6. Akagi, H. Watanabe E. H. & Aredes, M. “Instantaneous Power Theory and Applications to Power Conditioning”. New Jersey: John Wiley & Sons. 2007. 396 p.   
  7. F. C. D. L. Rosa. “Harmonics and Power Systems”. Boca Raton: CRC Press. 2006. 216 p.
  8. Tilli, A. Ronchi, F. & Tonielli, A.”Shunt active filters: selective compensation of current harmonics via state observer”. IEEE 2002 28th Annual Conference of the Industrial Electronics Society. IECON 02. 2002; Vol.2: 874–879. 
  9. M. S. A. Dahidah, Konstantinou, G. & Agelidis, V. G. “A Review of Multilevel Selective Harmonic Elimination PWM: Formulations, Solving Algorithms, Implementation and Applications”. IEEE Trans. Power Electron. Aug. 2015; Vol. 30 No. 8: 4091–4106. DOI: 10.1109/TPEL.2014.2355226.
  10. Kumar, D. & Zare, F. “Harmonic analysis of grid connected power electronic systems in low voltage distribution networks”.  IEEE Journal of Emerging and Selected Topics in Power Electronics. 2016; Vol.4 No. 4: 70–79
  11.  Wang, Y., Yong, J., Sun, Y., Xu, W. & Wong, D. “Characteristics of harmonic distortions in residential distribution systems”. IEEE Transactions on Power Delivery. 2017; Vol. 32 No. 3: 1495–1504.
  12.  ABB DRIVES. “Technical guide No. 6 Guide to harmonics with AC drives. 3AFE64292714 REV F EN 27.11.2017 *20434”. 32 p.
  13. Liu, K., Cao, W., Zhao, J., You J. &  Gu, Q. “Optimized current control and dynamic coordination strategy for large-capacity harmonic compensation system”. 2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC). Auckland: 2016. p. 1–4.
  14. Panda, G., Dash, S. K.  &  Sahoo, N. “Comparative performance analysis of Shunt Active power filter and Hybrid Active Power Filter using FPGA-based hysteresis current controller”. In 2012 IEEE 5th India International Conference on Power Electronics (IICPE). Dec. 2012. p. 1–6. DOI: 10.1109/IICPE.2012.6450517.
  15. Bacon, V. D. & S. A. O. da Silva. “Selective harmonic currents suppressing applied to a three-phase shunt active power filter based on adaptive filters”. 2015 IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference (COBEP/SPEC). Fortaleza: 2015. p. 1–6.
  16. Lascu, C., Asiminoaei, L., Boldea, I. & Blaabjerg, F. “High Performance Current Controller for Selective Harmonic Compensation in Active Power Filters”.  IEEE Trans. Power Electron. Sep. 2007; Vol. 22 No. 5: 1826–1835. DOI: 10.1109/TPEL.2007.904060.
  17. He, J. & Liang, Beihua. “Selective harmonic compensation using active power filter with enhanced double-loop controller”. 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia). Hefei: 2016. p. 2714–2718.
  18. Tilli, A.,  Marconi, L. & Conficoni C. “Analysis, dimensioning and robust control of shunt active filter for harmonic currents compensation in electrical mains”. Recent Advances in Robust Control – Theory and Applications in Robotics and Electromechanics, IntechOpen.  2011. p. 1–26. 
  19. Preetha, P. K., Surya, Babu S. & Manjula, G. Nair. “DC link voltage regulation in active filter using drainage power from distribution transformer”. 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES). Delhi: 2016. p. 1–4.
  20. Peresada, S., Zaichenko, Y. & Dymko, S.”Selective Estimation of Three-Phase Mains Current for Shunt Active Power Filter”. 2020 IEEE 7th International Conference on Energy Smart Systems (ESS). Kyiv: Ukraine 2020. p. 68–72. DOI: 10.1109/ESS50319.2020.9160201.
  21. Peresada, S., Zaichenko, Y., Pushnitsyn, D. & Reshetnyk, V. “Adaptive current control for shunt active power filters under resistance and inductance uncertainty”. IEEE International Conference on Intelligent Energy and Power Systems. Kharkiv: 2018. p. 280–285.
  22. Peresada, S., Kovbasa, S., Zaichenko, Y. & Reshetnyk, V. “Selective compensation of three-phase current harmonics”. Technical Electrodynamics (in Ukrainian). 2018; Vol. 4: 102–105. 
  23. Peresada, S., Zaichenko, Y. & Nikonenko, Y. “Partially Feedback Linearizing DC-Link Voltage Controller for Three-Phase Shunt Active Power Filters”. 2019 IEEE International Conference on Modern Electrical and Energy Systems (MEES). Kremenchuk: Ukraine. 2019. p. 306–309.
  24.  Ronchi, F. & Tilli, A. “Three-phase positive and negative sequences estimator to generate current reference for selective active filters”. IEEE Mediterranean conference on control and automationMED2002. Lisbon: 2002.
  25. Narendra, K. & Annaswamy, A. “Stable Adaptive Systems“. New Jersey: Englewood Cliffs: Prentice Hall. 1989.
Published:
Last download:
22 Oct 2021

Contents


[ © KarelWintersky ] [ All articles ] [ All authors ]
[ © Odessa National Polytechnic University, 2018.]