Scientific Journal

Applied Aspects of Information Technology

SOFTWARE AT MOBILE SPECTROMETER WITH CZT-DETECTOR
Abstract:
The technology is based on a semiconductor CdZnTe-portable (almost the size of a mobile phone) gamma-ray spectrometer with high resolution, which provides high efficiency of rapid identification of radionuclides and assessment of radiation dose from low to moderately high levels. The CdZnTe gamma-ray spectrometer is a highly efficient device based on the use of CdZnTe (CZT) semiconductor detectors operating at room temperature with very low power consumption, a digital multichannel analyzer, and a microcomputer. CdZnTe-portable spectrometer is a self-contained device and consists of three modules - a detector module, a multichannel analyzer, and a microcomputer. The detector module contains a high-quality CdZnTe detector, a preamplifier, and a high voltage power supply for the detector. There are detector modules with different volumes of the CZT detector from 5 mm3 to 1600 mm3. It is possible to use a multi-detector system. The analyzer module contains an amplifier, a digital signal processor, a low voltage power supply, and a computer interface. The microcomputer software interacts with the multichannel analyzer, analyzes gamma spectra, and provides the accumulation of time profiles of the dose of gamma radiation, communication with other information systems. Spectrometric measurements in real-time make it possible to use "electronic collimation" technologies to build a map of the radiation field and localize sources of ionizing radiation, with the subsequent certification of identified sources, creation of an effective radiation monitoring system with the functions of certification of ionizing sources radiation. The corresponding software allows you to solve the following tasks – building a three-dimensional map of the fields of ionizing radiation of various degrees of spatial detailing, taking into account the radiation energy, localization, and certification of gamma radiation sources. The special laboratory kit is based on μSPEC microspectrometers. A LattePanda single board computer is used to control the operation of spectrometers, collect and analyze data. LattePanda – A Windows 10 Computer with integrated Arduino. This explains the choice of LattePanda. Windows 10 application allows you to use the WinSPEC software to control the multichannel analyzer operation supplied with the spectrometer. The built-in Arduino allows you to remote control the movement of the radiation source during laboratory experiment. Both the traditional problems of calibrating spectrometers (energy calibration and efficiency curves), including those for various source geometries, processing the measured spectra using standard programs, calculating the activity of sources, and the problem of creating a spectra processing program and a spectrometer control program are considered. The values of the minimum detectable activity are given. 
Authors:
Keywords
DOI
10.15276/aait.01.2021.9
References

1. Marques, Luís, Vale, Alberto & Vaz, Pedro. “State-of-the-Art Mobile Radiation Detection Systems for Different Scenarios”. Sensors  21. 2021; No. 4: 1051. DOI: 10.3390/s21041051.

2. Ihantola, S., Tenglblad, O., Chitumbo, N., Csome, C., Eisheh, J.-T., Kröger, Paepen, J., Peräjärvi, K., Röning, J., Schneider, F., Toivonen, H. & Karagiannis, G. M. “Impact of Novel Technologies on Nuclear Security and Emergency Preparedness”.  EUR 29830 EN.  Publications Office of the European Union. Luxembourg: 2019.  ISBN 978-92-76-09668-9.  DOI: 10.2760/52056, JRC117583.

3. Ihantola, S. et al. “European Reference Network for Critical Infrastructure Protection: Radiological and Nuclear Threats to Critical Infrastructure Thematic Group: Novel detection technologies for nuclear security”.  EUR 29270 EN.  DOI: 10.2760/703301.

4. Tengblad, O., Peräjärvi, K., Toivonen, H., Tagziria, H., Schoech, H., Kröger, E. & Eisheh, J. “National and Cross-border Expert Support for Nuclear Security, Giannopoulos, G. editor(s), EUR 29602 EN”.  Publications Office of the European Union. Luxembourg: 2019. ISBN 978-92-79-98659-8 (online). DOI: 10.2760/365006 (online). JRC115110.

5. Paepen, J., Lutter, G., Schneider, F. E., Garcia Rosas, F. & Röning, J. “Performance of the IEC 63047 demonstration device, EUR 29787”.  Publications Office of the European Union.  Luxembourg: 2019. ISBN 978-92-76-08684-0. DOI: 10.2760/041774, JRC116872.

6. “Hamamatsu radiation detection module – Available from: https://www.hamamatsu.com/ eu/en/product/optical-sensors/radiation-sensor/radiation-detection-module/ index.html”. – [Accessed: Jan, 2021]. 

7. Tuchen Huang, Qibin Fu, Shaopeng Lin & Biao Wang. “NaI(Tl) scintillator read out with SiPM array for gamma spectrometer”. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2017; Vol. 851: 118–124. DOI: 10.1016/j.nima.2017.01.068.

8. Paepen, J. & Lutter, G. “An open-source solution for encoding and decoding IEC 63047:2018 data”. EUR 30409 EN”. Publications Office of the European Union. Luxembourg: 2021. ISBN 978-92-76-23523-1.  DOI: 10.2760/644570, JRC121882.

9. Sangiorgi, M., Hernández-Ceballos, M. A., Jackson, K., Cinelli, G., Bogucarskis, K., De Felice, L., Patrascu, A. & De Cort, M. “The European Radiological Data Exchange Platform (EURDEP)”.  25 years of monitoring data exchange. Earth Syst. Sci. Data. 12. p. 109–118. DOI: 10.5194/essd-12-109-2020, 2020.

10. Alan Owens.“Compound  semiconductor  radiation  detectors”.  CRC Press.Taylor  &  Francis Group.  2012. 568 p.

11. Oleinik, S. G., Maksimov, M. V. & Maslov, O. V. “Determination of the Burnup of Spent Nuclear Fuel during Reloading”. Atomic  Energy  92.2002. p. 296–300. DOI: 10.1023/A: 1016593608146.

12. Banzak, O. V., Maslov, O. V. &  Mokritsky, V. A. “New generation semiconductor detectors for radiation monitoring and dosimetry of ionizing radiation”. Monograph.  ISBN 978-966-413-428-3. Publishing house “VMV” (in Russian). Odessa: Ukraine. 2013. 220 p.

13. By Monia Kazemeini, John Vargas, Alexander Barzilov & Woosoon Yim. “Gamma Ray Measurements Using Unmanned Aerial Systems”. March 1st  2019. DOI: 10.5772/intechopen.82798.

14.  K. A. Pradeep Kumar, G. A. Shanmugha Sundaram & R. Thiruvengadathan. “Advances in detection algorithms for radiation monitoring”. Journal of Environmental Radioactivity. 2020; Vol. 217. DOI: 10.1016/j.jenvrad.2020.106216.

15. “Kromek: GR1”. – Available from: https://www.kromek.com/product/gr1. – [Accessed: Jan, 2021]. 

16. “Ritec: Nuclear Radiation Semiconductor Detectors and ASSOCIATED Electronics”. –  Available from: http: //www.ritec.lv/html/uspec.html#specs– [Accessed: Jan, 2021]. 

17. “Description of the MCA527 Firmware Commands”. – Available from: https://www.gbs-elektronik.de/media/download_gallery/MCA527_Firmware_Commands_2020_10_09.pdf. – [Accessed: Jan, 2021].

18. “GBS-Elektronik: Digital Multi Channel Analysers. MCA527 micro/micro+”. – Available from: https: //www.gbs-elektronik.de/posts/mca527-micro-micro-16.php. – [Accessed: Jan, 2021]. 

19.   “GBS-Elektronik:Description of the MCA Communication DLL”. – Available from: https://www.gbs-elektronik.de/media/download_gallery/MCA_Communication_DLL_2020_10_09.pd.f – [Accessed: Jan, 2021]. 

20.   “Ritec: OEM Detection Module DM118 / DM118/L”. – Available from: http://www.ritec.lv/html/dm118.html#overview. – [Accessed: Jan, 2021]. 

21. Maslov O. V., Mokritskiy V. A. & Sokolov A. V. “Application of CdZnTe Detectors for Control of Initial Enrichment of Fresh Nuclear Fuel at  Refueling”. EPJ Web Conf. 225 (2020) 03002. DOI: 10.1051/epjconf/202022503002.

22. Schneider, F. E., Wildermuth, D., Garcia Rosas, F., Paepen, J. & Lutter, G. “The IEC 63047 Standard for Data Transmission in Radiological and Nuclear Robotics Applications”. 2020 IEEE 10th International Conference on Intelligent Systems (IS). Varna: Bulgaria. 2020. p. 125–131. DOI: 10.1109/IS48319.2020.9200119.

23. Arsirii, O. O., Yadrova, M. V., Kondratyev, S. B. & Stelmakh, D. E. “Development of the intelligent software and hardware subsystem for capturing an object by robot manipulator”. Herald of Advanced Information TechnologyPubl. Science i Technical. Odesa: Ukraine. 2020; Vol.3 No.2: 42–51.  DOI: 10.15276/hait.02.2020.4.

24. Mohammad  Nakhostin. “Signal Processing for Radiation Detectors”.  Publ. Wiley.  ISBN: 1119410142,9781119410140. 2017. 514 p.

25. Selivanova, A., Hůlka, J., Seifert, D., Hlaváč, V., Krsek, P., Smutný, V., Wagner, L., Voltr, J., Rubovič, P., Češpírová, I. & Gryc, L. “The use of a CZT detector with robotic systems”. AppliedRadiation and Isotopes. 2020; Vol.166: 109395. DOI:10.1016/j.apradiso.2020.109395.

26. Angelo Rivetti. “CMOS: Front-End Electronics for Radiation Sensors”. CRC Press, Taylor & Francis Group. 2015. 726 p.

27. Krzysztof Iniewski, Salah Awadalla (Eds.) “Solid-State radiation detectors: technology and applications”. CRC Press.Taylor & Francis Group. 2016. 412 p.

28. Gordon Gilmore. “Practical gamma-ray spectrometry”. 2th ed.; Publ. Wiley. ISBN: 97804708619812008 047086. 1983. 389 p.

29. Mariscotti, M. A. “A method for automatic identification of peaks in the presence of background and its application to spectrum analysis”.  Nuclear Instruments and Methods. 1967; Vol. 50 Issue 2: 309–320. DOI: 10.1016/0029-554X(67)90058-4.

30.  Knoll, G. F. “Radiation Detection and Measurement”. 4th ed. Publ.John Wiley & Sons: New York: NY, USA. 2010. 830 p.

31. Done,L. & Ioan, M-R. “Minimum Detectable Activity in gamma spectrometry and its use in low level activity measurements”. Applied Radiation and Isotopes. 2016; Vol. 114: 28–32. DOI: 10.1016/j.apradiso.2016.05.004.

Published:
Last download:
7 May 2021

Contents


[ © KarelWintersky ] [ All articles ] [ All authors ]
[ © Odessa National Polytechnic University, 2018.]