Scientific Journal

Applied Aspects of Information Technology


The desire for energy independence presupposes the use of various types of elements for energy generation from renewable  sources, for the stand-alone operation of which energy storage devices are required. A power generation complex created in this way  must perform a number of tasks that are formed by the energy management system. The control system performs these tasks and  ensures proper static and dynamic characteristics of this complex with many inputs and outputs. The results of recent world  researches, as well as the authors experience of this work, show that, for creating such control systems, it is advisable to use Passive 

Based Control (PBC), presenting the control object as a Port-Controlled Hamiltonian (PCH) system. Thanks to the developed method  of additional interconnections and damping injection (Interconnection & Damping Assignment - IDA) passive control provides  ample opportunities to adjust the control effects, while ensuring the asymptotic stability of the system as a whole. This is particularly  useful in the complex system considered in this paper that includes both a hybrid power plant for electricity generation from the sun  and wind and a hybrid energy storage unit consisting of the battery and supercapacitor module. This article shows the procedure of  PBC system synthesis, according to which three structures of control influence formers (CIF) were designed and investigated. These  structures have different combinations of additional interconnections and damping, which allows forming the desired energy flows  inside the closed-loop system and therefore provide desired control results. Among them, there are tasks of maintaining voltages on  the DC bus and the supercapacitor module at reference levels, and the smoothness of the battery current transients. A comparative  simulation studies were performed on a computer model of the power generation complex with synthesized control systems, which was created in the MATLAB/Simulink environment. It showed the efficiency of their work and the advantages of different CIF  structures.


1. Cabrane, Z., Ouassaid, M. & Maaroufi, M. “Analysis and Evaluation of Battery-Supercapacitor  Hybrid Energy Storage System for Photovoltaic Installation”. Int. Journal of Hydrogen Energy. 2016;  Vol. 41: 20897–20907. DOI: 

2. Diaz-Gonzaleza, F., Sumpera, A., Gomis-Bellmunta, O. & Villafafila-Robles, R. “A Review of  Energy Storage Technology for wind Power Applications”. Renewable and Sustainable Energy Reviews. 2012; Vol. 16: 2154– 2171. DOI: 

3. Chong, W. T., Naghavi, M. S., Poh, S. C., Mahlia, T. M. I. & Pan K. C. “Techno-Economic Analysis  of a Wind-Solar Hybrid Renewable Energy System with Rainwater Collection Feature for Urban High-Rise  Application”. Applied Energy. 2011; Vol. 88: 4067–4077. DOI: j.apenergy.2011.04.042. 

4. Ekren O. & Ekren B. “Size Optimization of a PV/Wind Hybrid Energy Conversion System with  Battery Storage Using Simulated Annealing”. Applied Energy. 2010; Vol. 87: 592–598. DOI: 

5. Sinchuk, O. N., Kozakevych, I. A. & Vornikov, D. N. “Control System of Wind Generator Based  on Switched Relactance Motor”. Applied Aspects of Information TechnologyPubl. Nauka i Tekhnika.  Odesa: Ukraine. 2019; Vol. 2 No. 3: 230–242. DOI: 

6. Cabrane, Z., Ouassaid, M. & Maaroufi M. “Analysis and Evaluation of Battery-Supercapacitor  Hybrid Energy Storage System for Photovoltaic Installation”. Intern. Journal of Hydrogen Energy. 2016;  Vol. 41: 20897–20907. DOI: 

7. Ma, T., Yang, H. & Lu, L. “Development of Hybrid Battery–Supercapacitor Energy Storage for  Remote area Renewable Energy Systems”. Applied Energy. 2015; Vol. 153: 56–62. DOI: j.apenergy.2014.12.008. 

8. Ongaro, F., Saggini, S. & Mattavelli, P. “Li-Ion Battery-Supercapacitor Hybrid Storage System for a  Long Lifetime, Photovoltaic-Based Wireless Sensor Network”. IEEE Trans. Power Electron. 2012; Vol. 27  No.9: 3944–3952. DOI: 

9. Jing, W., Hung Lai, C., S. H. Wong, W. & M. L. Wong, D. “A Comprehensive Study of Battery Supercapacitor Hybrid Energy Storage System for Standalone PV Power System in Rural Electrification”.  Applied Energy. 2018; Vol. 224: 340–356. DOI: 

10.Kollimalla, S. K., Mishra, M. K. & Narasamma, N. L. “Design and Analysis of Novel Control  Strategy for Battery and Supercapacitor Storage System”. IEEE Trans. Sustainable Energy. 2014; Vol. 5  No.4: 1137–1144. DOI: 

11. Shchur, I. & Biletskyi, Y. “Enerhoformujuche keruvannia nelinijnymy elektromekhanichnymy  systemamy z synkhronnymy mashynamy na postijnykh mahnitakh: monografija”. [Energy-Shaping Control  of Nonlinear Electromechanical Systems with Permanent Magnet Synchronous Machines: Monograph] (in  Ukrainian). Lviv: Ukraine. 2018. 174 p. 

12. Wang, B., Xu, J., Xu, D. & Yan. Z. “Implementation of an Estimator-Based Adaptive Sliding  Mode Control Strategy for a Boost Converter Based Battery/Supercapacitor Hybrid Energy Storage System  in Electric Vehicles”. Energy Conversion and Management. 2017; Vol. 151: 562–572.  DOI:

13. Chong, L. W., Wong, Y. W., Rajkumar, R. K., Rajkumar, R. K. & Isa, D. “Hybrid Energy Storage  Systems and Control Strategies for Stand-Alone Renewable Energy Power Systems, Renew. Sustain”.  Energy Review. 2016; Vol. 6: 174–189. DOI: 

14. Thounthong, P., Luksanasakul, A., Koseeyaporn, P. & Davat, B. “Intelligent Model-Based Control  of a Standalone Photovoltaic/Fuel Cell Power Plant with Supercapacitor Energy Storage”. IEEE Trans.  Sustainable Energy. 2013; Vol. 4 No. 1: 240–249. DOI: 

15. Benaouadj, M., Aboubou, A., Ayad, M. Y. & Becherif, M. “Nonlinear Flatness Control Applied to  Supercapacitor Contribution in Hybrid Power Systems Using Photovoltaic Source and Batteries”. Energy  Procedia. 2014; Vol. 50: 333–341. DOI: 

16. Benaouadj, M., Aboubou, A., Ayad, M.Y. & Becherif, M. “Nonlinear Flatness Control Applied to  Supercapacitor Contribution in Hybrid Power Systems Using Photovoltaic Source and Batteries”. Energy  Procedia. 2014; Vol. 50: 333–341. DOI: 

17. Ortega, R., van der Schaft, A., Mareels, I. & Maschke, B. “Putting Energy Back in Control”. IEEE  Contr. Syst. Mag. 2001; Vol. 21 No. 2: 18–33. DOI:

18. Ortega, R., van der Schaft, A. J., Castanos, F. & Astolfi, A. “Control by Interconnection and  Standart Passivity-Based Control of Port-Hamailtonian Systems”. IEEE Contr. Syst. Tech. 2008; Vol. 53  No. 11: 2527–2542. DOI: 

19. Nunna, K., Sassano, M. & Astolfi, A. “Constructive Interconnection and Damping Assignment for  Port-Controlled Hamiltonian Systems”. IEEE Trans. Autom. Control. 2015; Vol. 60: 2350–2361. DOI: 

20. Benmouna, A., Becherif, M., Depature, C., Boulon, L. & Depernet D. “Experimental Study of  Energy Management of FC/SC Hybrid System Using the Passivity Based Control”. Int. J. of Hydrogen  Energ. 2018; Vol. 43 (25): 11583–11592. DOI: 

21. Benmouna, A., Becherif, M., Depernet, C. & Ebrahim, M. A. “Novel Energy Management  Technique for Hybrid Electric Vehicle Via Interconnection and Damping Assignment Passivity Based  Control”. Renewable Energy. 2018; Vol. 119: 116–128. DOI: 

22. Yang, D., Wang, J., Xiang, H. & Ma, Y. “Research on Passivity-Based Power Control of Direct-Driven  Wind Power System Dual-PWM Converter”. 2012 IEEE 7th Int. Power Electronics and Motion Control Conf. – ECCE Asia. Harbin: China. June 2-5, 2012. p. 841–845. DOI: 

23. Shchur, I., Rusek, A. & Biletskyi, Y. “Energy-Shaping Optimal Load Control of PMSG in a Stand Alone Wind Turbine as a Port-Controlled Hamiltonian System”. Przegląd Elektrotechniczny (Electrical  review). 2014; No. 5: 50–55. DOI: 

24. Shchur, I. & Biletskyi, Y. “Battery Current Limitation in Passivity-Based Controlled  Battery/Supercapacitor Hybrid Energy Storage System”. Proc. 38th IEEE Int. Conf. on Electronics and  Nanotechnology (ELNANO-2018). Kyiv: Ukraine. 2018. p. 504–510. DOI: ELNANO.2018.8477477. 

25. Biletskyi, Y., Kuzyk, Р.-І. & Lompart, Y. “Syntez ta analiz systemy enerhoformujuchoho  keruvannia vitrosoniachnoju ustanovkoju z hibrydnoju systemoju nakopychennia enerhii” [Synthesis and  Analysis of the Energy-Shaiping Control System of a Wind-Solar Power Plant with a Hybrid Energy Storage  System] (in Ukrainian). Electrical Power and Elektromechanical Systems. 2020; Vol.2 No. 1: 8–17. DOI: 

26. Shchur, I. & Biletskyi, Y. “Interconnection and Damping Assignment Passivity Based Control of  Semi-Active and Active Battery-Supercapacitor Hybrid Energy Storage Systems for Stand-Alone  Photovoltaic Installations”. Proc. 14th IEEE Int. Conf. on Advanced Trends in Radioelectronics,  Telecommunications and Computer Engineering (TCSET-2018). Lviv: Ukraine. 2018. p. 1–6.  DOI: 

27. Kuzyk, R.-I. & Biletskyi, Y. “Energy-Shaping Control of the Wind-Solar Power Plant with a  Hybrid Energy Storage System”. Proc. of the 9th Int. Conf, of Young Scientists EPECS-2019. Electronic  Edition on CD-ROM. 2019. p. 84–89.

28. Shchur, I. & Biletskyi, Y. “Improved Structure of Passivity-based Control of Battery Supercapacitor Hubrid Energy Storage System”. Applied Aspects of Information TechnologyPubl. Nauka i  Tekhnika. Odesa: Ukraine. 2020; Vol. 3 No. 4: 232–245. DOI: 

29. R. Ortega, A.J. van der Schaft, G. Escobar & Maschke B. ”Interconnection and Damping  Assignment Passivity-Based Control of Port-Controlled Hamiltonian Systems”. Automatica. 2002; Vol. 38: 585–596. DOI:
Last download:
22 Oct 2021


[ © KarelWintersky ] [ All articles ] [ All authors ]
[ © Odessa National Polytechnic University, 2018.]